2017 CCPC 哈尔滨站 HDU 6242
Geometry Problem
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)
Total Submission(s): 1091 Accepted Submission(s): 208
Special Judge
You are given N distinct points (Xi,Yi) on the two-dimensional plane. Your task is to find a point P and a real number R, such that for at least ⌈N2⌉ given points, their distance to point P is equal to R.
For each test case, the first line contains one positive number N(1≤N≤105).
The following N lines describe the points. Each line contains two real numbers Xi and Yi (0≤|Xi|,|Yi|≤103) indicating one give point. It's guaranteed that Npoints are distinct.
It is guaranteed that there exists at least one solution satisfying all conditions. And if there are different solutions, print any one of them. The judge will regard two point's distance as R if it is within an absolute error of 10−3 of R.
题意 给出n个点 确定一个圆的圆心和半径 使得至少n/2个点(向上取整)在该圆上 对于每组样例至少有一个解
解析 我们知道 在n个点中每个点在圆上的概率都为0.5 三个不共线的点确定一个外接圆 我们随机取三个点 这三个点的外接圆满足条件的概率为0.5*0.5*0.5=0.125
每次随机消耗的时间复杂度为1e5 枚举1秒内可以100 次 基本可以得到答案
AC代码
#include <cstdio>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <sstream>
#include <algorithm>
#include <string>
#include <queue>
#include <vector>
using namespace std;
const int maxn= 1e5+;
const double eps= 1e-;
const int inf = 0x3f3f3f3f;
typedef long long ll;
struct point
{
double x,y;
}a[maxn];
int n;
double dis(point a,point b) //两点间距离
{
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
bool waijie(point p1,point p2,point p3,point &ans) //引用修改圆心的值
{
if(fabs((p3.y-p2.y)*(p2.x-p1.x)-(p2.y-p1.y)*(p3.x-p2.x))<=eps)return false; //三点共线 没有外接圆
double Bx = p2.x - p1.x, By = p2.y - p1.y; //外接圆板子
double Cx = p3.x - p1.x, Cy = p3.y - p1.y;
double D = * (Bx * Cy - By * Cx);
double cx = (Cy * (Bx * Bx + By * By) - By * (Cx * Cx + Cy * Cy)) / D + p1.x;
double cy = (Bx * (Cx * Cx + Cy * Cy) - Cx * (Bx * Bx + By * By)) / D + p1.y;
ans.x=cx,ans.y=cy;
return true;
}
bool check(point mid,double d) //检查是否有n/2个点在外接圆上
{
int ans=;
for(int i=;i<=n;i++)
{
if(fabs(dis(a[i],mid)-d)<=eps)
ans++;
if((ans+(n-i))*<n) //简单优化一下 如果还未判断的点的数量加上已经满足条件的点的数量小于n/2 false
return false;
}
if(ans*>=n)
return true;
return false;
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
for(int i=;i<=n;i++)
scanf("%lf%lf",&a[i].x,&a[i].y);
if(n<=) //n小于等于4特判
{
printf("%lf %lf %lf\n",a[].x,a[].y,0.0);
continue;
}
else if(n<=)
{
printf("%lf %lf %lf\n",(a[].x+a[].x)/,(a[].y+a[].y)/,dis(a[],a[])/);
continue;
}
while(true)
{
point aa=a[rand()%n+],bb=a[rand()%n+],cc=a[rand()%n+]; //随机产生3个点
point xin;
if(!waijie(aa,bb,cc,xin))
continue;
double r=dis(aa,xin);
if(check(xin,r))
{
// printf("%lf %lf\n",aa.x,aa.y);
// printf("%lf %lf\n",bb.x,bb.y);
// printf("%lf %lf\n",cc.x,cc.y);
printf("%lf %lf %lf\n",xin.x,xin.y,r);
break;
}
}
}
return ;
}
2017 CCPC 哈尔滨站 HDU 6242的更多相关文章
- HDU 6240 Server(2017 CCPC哈尔滨站 K题,01分数规划 + 树状数组优化DP)
题目链接 2017 CCPC Harbin Problem K 题意 给定若干物品,每个物品可以覆盖一个区间.现在要覆盖区间$[1, t]$. 求选出来的物品的$\frac{∑a_{i}}{∑b_ ...
- 2017 CCPC 哈尔滨站 题解
题目链接 2017 CCPC Harbin Problem A Problem B Problem D Problem F Problem L 考虑二分答案. 设当前待验证的答案为x 我们可以把第二 ...
- 2017 ccpc哈尔滨 A题 Palindrome
2017 ccpc哈尔滨 A题 Palindrome 题意: 给一个串\(T\),计算存在多少子串S满足\(S[i]=S[2n−i]=S[2n+i−2](1≤i≤n)\) 思路: 很明显这里的回文串长 ...
- HDU 6271 Master of Connected Component(2017 CCPC 杭州 H题,树分块 + 并查集的撤销)
题目链接 2017 CCPC Hangzhou Problem H 思路:对树进行分块.把第一棵树分成$\sqrt{n}$块,第二棵树也分成$\sqrt{n}$块. 分块的时候满足每个块是一个 ...
- HDU 6270 Marriage (2017 CCPC 杭州赛区 G题,生成函数 + 容斥 + 分治NTT)
题目链接 2017 CCPC Hangzhou Problem G 题意描述很清晰. 考虑每个家庭有且仅有$k$对近亲的方案数: $C(a, k) * C(b, k) * k!$ 那么如果在第$1$ ...
- HDU 6268 Master of Subgraph (2017 CCPC 杭州 E题,树分治 + 树上背包)
题目链接 2017 CCPC Hangzhou Problem E 题意 给定一棵树,每个点有一个权值,现在我们可以选一些连通的点,并且把这点选出来的点的权值相加,得到一个和. 求$[1, m] ...
- ccpc杭州站 赛后总结
Ccpc杭州站赛后总结 2017年11月4号五号,我参加了ccpc杭州站的比赛,我的队友是聂少飞和王艳,在4号一点半,举行了比赛开幕式,听着教练代表的发言,听着参赛选手代表的发言,听着志愿者的发言,都 ...
- ccpc 网络赛 hdu 6155
# ccpc 网络赛 hdu 6155(矩阵乘法 + 线段树) 题意: 给出 01 串,要么询问某个区间内不同的 01 子序列数量,要么把区间翻转. 叉姐的题解: 先考虑怎么算 \(s_1, s_2, ...
- 2017 多校3 hdu 6061 RXD and functions
2017 多校3 hdu 6061 RXD and functions(FFT) 题意: 给一个函数\(f(x)=\sum_{i=0}^{n}c_i \cdot x^{i}\) 求\(g(x) = f ...
随机推荐
- Python学习日记:day9--------函数
初识函数 1,自定义函数 s ='内容' #自定义函数 def my_len():#自定义函数没有参数 i =0 for k in s: i+=1 print(i) return i #返回值 my_ ...
- CSS height:100%无效
本文同时发表在https://github.com/zhangyachen/zhangyachen.github.io/issues/38 浏览器根本就不计算内容的高度,除非内容超出了视窗范围(导致滚 ...
- bzoj 3653 [湖南集训]谈笑风生
题目描述 设 T 为一棵有根树,我们做如下的定义: • 设 a 和 b 为 T 中的两个不同节点.如果 a 是 b 的祖先,那么称"a 比 b 不知道高明到哪里去了". • 设 a ...
- TensorFlow 代码行统计
https://github.com/tensorflow/tensorflow.git
- Nodejs密集型CPU解决方案
首先说一下nodejs单线程的优势: 高性能,与php相比,避免了频繁创建切换线程的开销,执行更加迅速,资源占用小. 线程安全,不用担心同一变量被多线程读写,造成程序崩溃. 单线程的异步和非阻塞,其实 ...
- 准确率(Accuracy), 精确率(Precision), 召回率(Recall)和F1-Measure(对于二分类问题)
首先我们可以计算准确率(accuracy),其定义是: 对于给定的测试数据集,分类器正确分类的样本数与总样本数之比.也就是损失函数是0-1损失时测试数据集上的准确率. 下面在介绍时使用一下例子: 一个 ...
- Linux小记
一.在vim中如何查看正在编辑的文件名 在正常模式下: :f 或 CTRL+G 查看文件的路径 用:!pwd 可以看当前的详细路径. 二.crontab 在crontab中, 命令crontab -e ...
- Python 开发个人微信号在运维开发中的使用
一.主题:Python 开发个人微信号在运维开发中的使用 二.内容: 企业公众号 介绍开发微信公众号的后台逻辑,包括服务器验证逻辑.用户认证逻辑 个人微信号 面对企业微信的种种限制,可以使用 Itch ...
- 基于MongoDb官方C#驱动封装MongoDbCsharpHelper类(CRUD类)
近期工作中有使用到 MongoDb作为日志持久化对象,需要实现对MongoDb的增.删.改.查,但由于MongoDb的版本比较新,是2.4以上版本的,网上已有的一些MongoDb Helper类都是基 ...
- File API文件操作之FileReader
近来研究点对点的文件传输,想到一种方案FileReader+WebRtc. 当我看到FileReader的时候,哎呀,不错的东西啊,仔细一看属于File API,或者叫做Web API. File A ...