在上两节中,我们讲解了机器学习的决策树和k-近邻算法,本节我们讲解另外一种分类算法:支持向量机SVM。

SVM是迄今为止最好使用的分类器之一,它可以不加修改即可直接使用,从而得到低错误率的结果。

【案例背景】

从前有两个地主,他们都是占山为王的一方霸主。本来各自吃饱自己的饭万事无忧,可是人心不知足蛇吞象啊,自己总是都想占对方的一亩三分地,冲突争吵从来都没有停歇过。当时的环境就是谁狠这土地就归谁,但是我们现在想从科学的角度来分析,如何让他们的地盘均分,画条边界线,从此互不干扰呢?

【演示代码】

import numpy as np
import matplotlib.pylab as plt
from sklearn import svm #生成随机分布的点
np.random.seed(1)
X=np.r_[np.random.randn(20,2)-[2,2],np.random.randn(20,2)+[2,2]]
Y=[0]*20+[1]*20 #在图中画出随机分布的点
plt.scatter(X[:,0],X[:,1],c=Y,s=80,cmap=plt.cm.Paired) #这里是SVM核心算法函数
clf=svm.SVC(kernel='linear')
clf.fit(X,Y) #画出分割线
w=clf.coef_[0]
a=-w[0]/w[1] #得到斜率
xx=np.linspace(-5,5)
yy=a*xx-(clf.intercept_[0])/w[1]
plt.plot(xx,yy,'k-') #在图中画出支持向量的点的两条直线
b=clf.support_vectors_[0]
yy_down=a*xx+(b[1]-a*b[0])
b=clf.support_vectors_[-1]
yy_up=a*xx+(b[1]-a*b[0])
plt.plot(xx,yy_down,'k--')
plt.plot(xx,yy_up,'k--') #将支持向量的点特殊显示
plt.scatter(clf.support_vectors_[:,0],clf.support_vectors_[:,1],s=100) #在图中显示需要预测的点
test_x1, test_y1 = (-3, -3)
test_x2, test_y2 = (0, 5)
plt.scatter([test_x1],[test_y1],s=100)
plt.scatter([test_x2],[test_y2],s=100)
Z1 = clf.predict([[test_x1, test_y1]])
Z2 = clf.predict([[test_x2, test_y2]])
print('预测结果:',Z1) #显示预测结果
print('预测结果:',Z2) #显示预测结果 plt.show()

【执行结果】

预测结果: [0]
预测结果: [1]

【结果分析】

在上图中,用了4种颜色的圆点和三条直线,他们分别表示如下:

浅色点:地主1的建筑物

紫色点:地主2的建筑物

蓝色点:地主1和地主2相邻的关键建筑物

黄色点:预测点1

绿色点:预测点2

实体直线:最终的分界线,即楚河汉界的分界线,直线下方是地主1的地盘,直线上方是地主2的地盘。

虚线:关键点连成的直线,他们到分界线是等距的。

我们看到预测结果,黄点预测结果显示0,表示它在地主1的地盘;绿点预测结果显示1,表示它在地主2的地盘。

当然我们从肉眼也可以判断本次预测结果是对的。

【算法总结】

1. SVM算法只能划分两类物体,当然多类的情况可以转化为多次两类进行划分。

2. SVM算法不仅能划分线性可分的情况,还可以划分更加复杂线性不可分的情况,核心思想是:变成高阶计算,然后映射到低阶,以后有机会再单独演示这种情况。

OK, 本讲到此结束,后续更多精彩内容,请持续关注我的博客。

本文为原创文章,请珍惜作者的劳动成果,转载请注明出处。

原文地址:http://www.cnblogs.com/robin201711/p/7998613.html

机器学习算法 - 支持向量机SVM的更多相关文章

  1. 机器学习之支持向量机—SVM原理代码实现

    支持向量机—SVM原理代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/9596898.html 1. 解决 ...

  2. 【机器学习】支持向量机SVM

    关于支持向量机SVM,这里也只是简单地作个要点梳理,尤其是要注意的是SVM的SMO优化算法.核函数的选择以及参数调整.在此不作过多阐述,单从应用层面来讲,重点在于如何使用libsvm,但对其原理算法要 ...

  3. 吴裕雄--天生自然python机器学习:支持向量机SVM

    基于最大间隔分隔数据 import matplotlib import matplotlib.pyplot as plt from numpy import * xcord0 = [] ycord0 ...

  4. python机器学习之支持向量机SVM

    支持向量机SVM(Support Vector Machine) 关注公众号"轻松学编程"了解更多. [关键词]支持向量,最大几何间隔,拉格朗日乘子法 一.支持向量机的原理 Sup ...

  5. Python机器学习算法 — 支持向量机(SVM)

    SVM--简介 <α∗j<C,可得:          构造决策函数:  5.求最优解         要求解的最优化问题如下:          考虑使用序列最小最优化算法(SMO,se ...

  6. 机器学习(十一) 支持向量机 SVM(上)

    一.什么是支撑向量机SVM (Support Vector Machine) SVM(Support Vector Machine)指的是支持向量机,是常见的一种判别方法.在机器学习领域,是一个有监督 ...

  7. 机器学习-5 支持向量机SVM

    一.概念和背景 SVM:Support Vector Machine 支持向量机. 最早是由Vladimir N. Vapnik和Alexey Ya. Chervonenkis在1963年提出的. 目 ...

  8. 机器学习:支持向量机(SVM)

    SVM,称为支持向量机,曾经一度是应用最广泛的模型,它有很好的数学基础和理论基础,但是它的数学基础却比以前讲过的那些学习模型复杂很多,我一直认为它是最难推导,比神经网络的BP算法还要难懂,要想完全懂这 ...

  9. 机器学习(十一) 支持向量机 SVM(下)

    支持向量机通过某非线性变换 φ( x) ,将输入空间映射到高维特征空间.特征空间的维数可能非常高.如果支持向量机的求解只用到内积运算,而在低维输入空间又存在某个函数 K(x, x′) ,它恰好等于在高 ...

随机推荐

  1. Servlet 笔记-servlet实例

    Servlet 是服务 HTTP 请求并实现 javax.servlet.Servlet 接口的 Java 类.Web 应用程序开发人员通常编写 Servlet 来扩展 javax.servlet.h ...

  2. [poj1644]放苹果

    题目链接:http://poj.org/problem?id=1664       把M个同样的苹果放在N个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?(用K表示)5,1,1和1,5, ...

  3. [译]ASP.NET Core 2.0 机密配置项

    问题 如何在ASP.NET Core 2.0中保存机密配置项(不用将其暴露给源代码管理器)? 答案 创建一个ASP.NET Core 2.0空项目,在项目节点上点击右键,并点击菜单项 - 管理用户机密 ...

  4. Kinect v2(Microsoft Kinect for Windows v2 )配置移动电源解决方案

    Kinect v2配置移动电源解决方案 Kinect v2如果用于移动机器人上(也可以是其他应用场景),为方便有效地展开后续工作,为其配置移动电源是十分必要的. 一.选择移动电源 Kinect v2原 ...

  5. ASP.NET Core 2.0 in Docker on Windows Container

    安装Docker for Windows https://store.docker.com/editions/community/docker-ce-desktop-windows 要想将一个ASP. ...

  6. 安装jdk时出现java -version权限不够问题

    今天在ubuntu上安装jdk的时候,最后测试java -version总是不行,出现了 bash: /home/jdk1.7.0_25/bin/java: 权限不够的问题 百度之后,在http:// ...

  7. 如何让Vim成为我们的神器

    Vim 是 Linux 系统上的最著名的文本/代码编辑器,也是早年的 Vi 编辑器的加强版,而 gVim 则是其 Windows 版.它的最大特色是完全使用键盘命令进行编辑,脱离了鼠标操作虽然使得入门 ...

  8. Ionic3 创建应用(Android)

    打开CMD 通过命令行进入项目目录 创建一个App项目 ionic start myApp blank 空白App ionic start myApp tabs 导航条 ionic start myA ...

  9. BZOJ-1864-[Zjoi2006]三色二叉树(树形dp)

    Description Input 仅有一行,不超过500000个字符,表示一个二叉树序列. Output 输出文件也只有一行,包含两个数,依次表示最多和最少有多少个点能够被染成绿色. Sample ...

  10. 移动端click事件延迟300ms的原因以及解决办法[转载]

    原文:http://www.bubuko.com/infodetail-822565.html 这要追溯至 2007 年初.苹果公司在发布首款 iPhone 前夕,遇到一个问题 —— 当时的网站都是为 ...