机器学习算法 - 支持向量机SVM
在上两节中,我们讲解了机器学习的决策树和k-近邻算法,本节我们讲解另外一种分类算法:支持向量机SVM。
SVM是迄今为止最好使用的分类器之一,它可以不加修改即可直接使用,从而得到低错误率的结果。
【案例背景】
从前有两个地主,他们都是占山为王的一方霸主。本来各自吃饱自己的饭万事无忧,可是人心不知足蛇吞象啊,自己总是都想占对方的一亩三分地,冲突争吵从来都没有停歇过。当时的环境就是谁狠这土地就归谁,但是我们现在想从科学的角度来分析,如何让他们的地盘均分,画条边界线,从此互不干扰呢?
【演示代码】
import numpy as np
import matplotlib.pylab as plt
from sklearn import svm #生成随机分布的点
np.random.seed(1)
X=np.r_[np.random.randn(20,2)-[2,2],np.random.randn(20,2)+[2,2]]
Y=[0]*20+[1]*20 #在图中画出随机分布的点
plt.scatter(X[:,0],X[:,1],c=Y,s=80,cmap=plt.cm.Paired) #这里是SVM核心算法函数
clf=svm.SVC(kernel='linear')
clf.fit(X,Y) #画出分割线
w=clf.coef_[0]
a=-w[0]/w[1] #得到斜率
xx=np.linspace(-5,5)
yy=a*xx-(clf.intercept_[0])/w[1]
plt.plot(xx,yy,'k-') #在图中画出支持向量的点的两条直线
b=clf.support_vectors_[0]
yy_down=a*xx+(b[1]-a*b[0])
b=clf.support_vectors_[-1]
yy_up=a*xx+(b[1]-a*b[0])
plt.plot(xx,yy_down,'k--')
plt.plot(xx,yy_up,'k--') #将支持向量的点特殊显示
plt.scatter(clf.support_vectors_[:,0],clf.support_vectors_[:,1],s=100) #在图中显示需要预测的点
test_x1, test_y1 = (-3, -3)
test_x2, test_y2 = (0, 5)
plt.scatter([test_x1],[test_y1],s=100)
plt.scatter([test_x2],[test_y2],s=100)
Z1 = clf.predict([[test_x1, test_y1]])
Z2 = clf.predict([[test_x2, test_y2]])
print('预测结果:',Z1) #显示预测结果
print('预测结果:',Z2) #显示预测结果 plt.show()
【执行结果】
预测结果: [0]
预测结果: [1]

【结果分析】
在上图中,用了4种颜色的圆点和三条直线,他们分别表示如下:
浅色点:地主1的建筑物
紫色点:地主2的建筑物
蓝色点:地主1和地主2相邻的关键建筑物
黄色点:预测点1
绿色点:预测点2
实体直线:最终的分界线,即楚河汉界的分界线,直线下方是地主1的地盘,直线上方是地主2的地盘。
虚线:关键点连成的直线,他们到分界线是等距的。
我们看到预测结果,黄点预测结果显示0,表示它在地主1的地盘;绿点预测结果显示1,表示它在地主2的地盘。
当然我们从肉眼也可以判断本次预测结果是对的。
【算法总结】
1. SVM算法只能划分两类物体,当然多类的情况可以转化为多次两类进行划分。
2. SVM算法不仅能划分线性可分的情况,还可以划分更加复杂线性不可分的情况,核心思想是:变成高阶计算,然后映射到低阶,以后有机会再单独演示这种情况。
OK, 本讲到此结束,后续更多精彩内容,请持续关注我的博客。
本文为原创文章,请珍惜作者的劳动成果,转载请注明出处。
原文地址:http://www.cnblogs.com/robin201711/p/7998613.html
机器学习算法 - 支持向量机SVM的更多相关文章
- 机器学习之支持向量机—SVM原理代码实现
支持向量机—SVM原理代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/9596898.html 1. 解决 ...
- 【机器学习】支持向量机SVM
关于支持向量机SVM,这里也只是简单地作个要点梳理,尤其是要注意的是SVM的SMO优化算法.核函数的选择以及参数调整.在此不作过多阐述,单从应用层面来讲,重点在于如何使用libsvm,但对其原理算法要 ...
- 吴裕雄--天生自然python机器学习:支持向量机SVM
基于最大间隔分隔数据 import matplotlib import matplotlib.pyplot as plt from numpy import * xcord0 = [] ycord0 ...
- python机器学习之支持向量机SVM
支持向量机SVM(Support Vector Machine) 关注公众号"轻松学编程"了解更多. [关键词]支持向量,最大几何间隔,拉格朗日乘子法 一.支持向量机的原理 Sup ...
- Python机器学习算法 — 支持向量机(SVM)
SVM--简介 <α∗j<C,可得: 构造决策函数: 5.求最优解 要求解的最优化问题如下: 考虑使用序列最小最优化算法(SMO,se ...
- 机器学习(十一) 支持向量机 SVM(上)
一.什么是支撑向量机SVM (Support Vector Machine) SVM(Support Vector Machine)指的是支持向量机,是常见的一种判别方法.在机器学习领域,是一个有监督 ...
- 机器学习-5 支持向量机SVM
一.概念和背景 SVM:Support Vector Machine 支持向量机. 最早是由Vladimir N. Vapnik和Alexey Ya. Chervonenkis在1963年提出的. 目 ...
- 机器学习:支持向量机(SVM)
SVM,称为支持向量机,曾经一度是应用最广泛的模型,它有很好的数学基础和理论基础,但是它的数学基础却比以前讲过的那些学习模型复杂很多,我一直认为它是最难推导,比神经网络的BP算法还要难懂,要想完全懂这 ...
- 机器学习(十一) 支持向量机 SVM(下)
支持向量机通过某非线性变换 φ( x) ,将输入空间映射到高维特征空间.特征空间的维数可能非常高.如果支持向量机的求解只用到内积运算,而在低维输入空间又存在某个函数 K(x, x′) ,它恰好等于在高 ...
随机推荐
- vue 从入门到精通(二)
上一篇总结了一些vue的理论知识,如果你没看懂的话--那返回去继续去看啊!反正我要开始第二篇了. vue提供了大量的指令,比如:v-if,v-bind,v-on--太多,多写项目,多看API,这里就不 ...
- base64减少图片请求
1. 使用base64减少 a) 2. 页面解析 CSS 生成的 CSSOM 时间增加 Base64 跟 CSS 混在一起,大大增加了浏览器需要解析CSS树的耗时.其实解析CSS ...
- LeetCode 531. Longly Pixel I (孤独的像素之一) $
Given a picture consisting of black and white pixels, find the number of black lonely pixels. The pi ...
- 聊聊java基础,int值强制类型转换成byte
聊聊java基础,int值强制类型转换成byte 知识点:byte.short.char在表达式中会自动提升为int 之前做一个应用时,打印IP地址,因为是用4个byte存储的,所以打印的时候值范围是 ...
- Appium python自动化测试系列之混合app实战(十一)
12.1 什么是混合App 12.1.1 混合app定义 什么是混合app,其实这个不言而喻,我们的app正常来说应该都是native的,但是实际工作中却不是,反正种种原因我们的app会有native ...
- css基础语法一(选择器与css导入方式)
页面中,所有的CSS代码,需要写入到<style></style>标签中.style标签的type属性应该选择text/css,但是type属性可以省略. CSS修改页面中的所 ...
- java读写锁ReadWriteLock
package com.java.concurrent; import java.util.concurrent.locks.ReadWriteLock; import java.util.concu ...
- 基于node的websocket示例
websocket:用语服务器端主动向客户端推送消息 本例基于koa框架编写用例:服务器端需要安装相关模块 koa koa-socket co等 服务器端脚本:(需要安装相关模块 koa koa-so ...
- mongodb集群【】
参考 http://www.jianshu.com/p/2825a66d6aed http://www.cnblogs.com/huangxincheng/archive/2012/03/07/238 ...
- php正则表达式,在抓取内容进行匹配的时候表现不稳定
最近做了一个 抓取内容的程序,使用php的正则表达式对抓取的内容进行匹配,当进行大量匹配运算的时候,发现偶尔会出现匹配失败的情况.检查不出任何原因. 匹配失败导致匹配结果为空,最终导致写入数据库失败. ...