/*
Dijkstra算法用优先队列来实现,实现了每一条边最多遍历一次。 要知道,我们从队列头部找到的都是到
已经"建好树"的最短距离以及该节点编号, 并由该节点去更新 树根 到其他点(被更新的节点可以在队列中
,也可以是非队列中的节点)的距离 。 ////如果v节点的到更新,则直接放入队列中(pair<d[v], v>)不会重复放入到队列中 如果某个节点从队列中出来的时候,如果cur.first != dist[cur.second] 就是 cur.second这个节点一开始
被更新的最短距离值 和 现在得到的最短距离的值dist[cur.second] 不想等,说明该节点已经被之前队列中
具有更短距离的节点更新过了, 那么新的节点pair(dist[cur.second], cur.second)再次放入优先队列中,用来跟新其他节点的最短距离。 如果想等,则dist[cur.second]就是cur.second最终的最短距离!
*/
#include<iostream>
#include<queue>
#include<cstring>
#define N 1000
using namespace std; class EDGE
{
public:
int u, v, w;
int next;//和节点 u 相连的下一条边的编号
}; EDGE edge[*N]; typedef pair<int, int>pii;//pair<距离,节点号> int first[N];//最多有N个节点 ,建立每个节点和其相连的边的关系
int dist[N];//源点到各个点的最短距离 int n, m;//节点数,边数 bool operator >(pii a, pii b)
{
if(a.first==b.first)
return a.second > b.second;
return a.first > b.first;//按照最短的距离值在队列的前段
} priority_queue<pii, vector<pii>, greater<pii> >q; void Dijkstra()
{
pii cur;
memset(dist, 0x3f, sizeof(dist));
dist[]=;//另节点 1 为源点
q.push(make_pair(, ));
while(!q.empty())
{
cur=q.top();
q.pop();
if(cur.first != dist[cur.second]) continue;// 不等于的话说明该节点的值已经经过其他节点松弛为更短的距离值了
for(int e=first[cur.second]; e!=-; e=edge[e].next)
if(dist[edge[e].v]>dist[edge[e].u]+edge[e].w)
{
dist[edge[e].v]=dist[edge[e].u]+edge[e].w;
q.push(make_pair(dist[edge[e].v], edge[e].v));//将更新之后的节点的放入队列之中
}
}
} int main()
{
int i;
cin>>n>>m;
for(i=; i<=n; ++i)
first[i]=-;
for(i=; i<m; ++i)
{
cin>>edge[i].u>>edge[i].v>>edge[i].w;
edge[edge[i].u].next=first[edge[i].u];
first[edge[i].u]=i;
}
Dijkstra();
for(i=; i<=n; ++i)
cout<<"1->"<<i<<":"<<dist[i]<<endl;
return ;
}
 /*
Bellman_Ford算法用队列实现和 Dijkstra算法用优先队列来实现相同的地方是,都是 层次 更新到节点的最短距离,
3 都是将具有最短距离的节点(如果不在队列中)放入队列中
Bellman_Ford算法中实现的是带有负权图的最短距离,因为负权的关系,这样可能使得某个
节点的最短路径的值一直被更新(比如存在负权回路的时候),所以被更新的节点(如果不在队列中)一直会进入队列中
*/
#include<iostream>
#include<queue>
#include<cstring>
#define N 1000
using namespace std; class EDGE
{
public:
int u, v, w;
int next;//和节点 u 相连的下一条边的编号
}; EDGE edge[*N]; int first[N];//最多有N个节点 ,建立每个节点和其相连的边的关系
int dist[N];//源点到各个点的最短距离
int cnt[N];//记录每个节点在队列中出现的次数
int vis[N];//记录当前的节点是否已经在队列中 int n, m;//节点数,边数 queue<int>q; int Bellman_Ford()
{
int cur;
memset(dist, 0x3f, sizeof(dist));
dist[]=;//另节点 1 为源点
q.push();
while(!q.empty())
{
cur=q.front();
q.pop();
vis[cur]=;//出队列
++cnt[cur];
if(cnt[cur]>n-)//如果不存在负权回路,那么某个节点的最多被更新的次数为 n-1 次
return ;
for(int e=first[cur]; e!=-; e=edge[e].next)
if(dist[edge[e].v]>dist[edge[e].u]+edge[e].w)
{
dist[edge[e].v]=dist[edge[e].u]+edge[e].w;
if(!vis[edge[e].v])//本跟新的节点没有在队列中
{
q.push(edge[e].v);//将更新之后的节点的放入队列之中
vis[edge[e].v]=;//放入队列
}
}
}
return ;
} int main()
{
int i;
cin>>n>>m;
for(i=; i<=n; ++i)
first[i]=-;
for(i=; i<m; ++i)
{
cin>>edge[i].u>>edge[i].v>>edge[i].w;
edge[edge[i].u].next=first[edge[i].u];
first[edge[i].u]=i;
}
if(!Bellman_Ford())//表示存在负权回路
cout<<"不存在最短路径"<<endl;
else
{
for(i=; i<=n; ++i)
cout<<"1->"<<i<<":"<<dist[i]<<endl;
}
return ;
}

Dijkstra算法优先队列实现与Bellman_Ford队列实现的理解的更多相关文章

  1. dijkstra算法优先队列

    d[i] 是起点到 I 节点的最短距离 void Dijkstra(int s) { priority_queue<P, vector<P>, greater<P> &g ...

  2. 最短路模板(Dijkstra & Dijkstra算法+堆优化 & bellman_ford & 单源最短路SPFA)

    关于几个的区别和联系:http://www.cnblogs.com/zswbky/p/5432353.html d.每组的第一行是三个整数T,S和D,表示有T条路,和草儿家相邻的城市的有S个(草儿家到 ...

  3. 基于STL优先队列和邻接表的dijkstra算法

    首先说下STL优先队列的局限性,那就是只提供入队.出队.取得队首元素的值的功能,而dijkstra算法的堆优化需要能够随机访问队列中某个节点(来更新源点节点的最短距离). 看似可以用vector配合m ...

  4. HDU 1535 Invitation Cards(逆向思维+邻接表+优先队列的Dijkstra算法)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1535 Problem Description In the age of television, n ...

  5. dijkstra算法与优先队列

    这是鄙人的第一篇技术博客,作为算法小菜鸟外加轻度写作障碍者,写技术博客也算是对自己的一种挑战和鞭策吧~ 言归正传,什么是dijkstra算法呢? -dijkstra算法是一种解决最短路径问题的简单有效 ...

  6. Dijkstra算法(朴素实现、优先队列优化)

    Dijkstra算法只能求取边的权重为非负的图的最短路径,而Bellman-Ford算法可以求取边的权重为负的图的最短路径(但Bellman-Ford算法在图中存在负环的情况下,最短路径是不存在的(负 ...

  7. dijkstra算法之优先队列优化

    github地址:https://github.com/muzhailong/dijkstra-PriorityQueue 1.题目 分析与解题思路 dijkstra算法是典型的用来解决单源最短路径的 ...

  8. 单源最短路径算法——Bellman-ford算法和Dijkstra算法

     BellMan-ford算法描述 1.初始化:将除源点外的所有顶点的最短距离估计值 dist[v] ← +∞, dist[s] ←0; 2.迭代求解:反复对边集E中的每条边进行松弛操作,使得顶点集V ...

  9. ACM: HDU 1874 畅通工程续-Dijkstra算法

    HDU 1874 畅通工程续 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Desc ...

随机推荐

  1. css3的动画特性

    css3 的过渡动画,有些时候会产生一些其他问题. 比如:你想先改一个css属性,之后再进行动画过渡,结果实际上你会发现,css属性和动画是同步进行的.这个应该是在编译阶段就确定好了. 所以只能通过s ...

  2. db2定界符

    在DB2数据库中,在导出DEL文件时,默认的字符分隔符是".字段分隔符是, (逗号).有一个需求是要为Oracle数据库提供数据,因此就想使用"|"作为数据的字段分隔符. ...

  3. MySQL中EXPLAIN命令详解

    explain显示了mysql如何使用索引来处理select语句以及连接表.可以帮助选择更好的索引和写出更优化的查询语句. 使用方法,在select语句前加上explain就可以了: 如: expla ...

  4. ajax 后台正常执行 错误类型却是404

    后台执行importExcel,明明方法执行成功,但是前台却提示404 @RequestMapping("/import") public Json importExcel(@Re ...

  5. 6_PHP AJAX MYSQL

    XAMPP套装软件: 包含Apache.MySQL.PHP等多个开源软件的集合. https://www.apachefriends.org/zh_cn/index.html 监听完整相应消息: Wi ...

  6. 新入门node.js必须要知道的概念

    一.对于一个刚入门node.js的朋友来说,一定要了解一些基础概念: 今年我正式进入社会后,发现自己所知道的IT方面的知识,真的只是牛毛,原来人外有人,山外有山,还需要继续努力.下面是一些我的自学习心 ...

  7. Python3.5+selenium操作Chrome浏览器

    1.安装selenium 命令提示符下输入: pip install selenium 2.下载chromedriver 点击下载 3.将解压后的chromedriver.exe放到chrome浏览器 ...

  8. 9.30notes

    memcached   缓存机制,减轻数据库负载.它通过在内存中缓存数据和对象来减少读取数据库的次数,从而提高动态.数据库驱动网站的速度. array_slice(data['list'],0,10) ...

  9. RadioGroup实现导航栏

    ​[声明] 欢迎转载,但请保留文章原始出处→_→ 生命壹号:http://www.cnblogs.com/smyhvae/ 文章来源:http://www.cnblogs.com/smyhvae/p/ ...

  10. c++怎样让函数返回数组

    这个问题属于非常初级的问题,但是对于初学不知道的人可能会比较头疼.C++中函数是不能直接返回一个数组的,但是数组其实就是指针,所以可以让函数返回指针来实现.比如一个矩阵相乘的函数,很容易地我们就写成: ...