通常,我们会采用ORDER BY LIMIT start, offset 的方式来进行分页查询。例如下面这个SQL:

SELECT * FROM `t1` WHERE ftype=1 ORDER BY id DESC LIMIT 100, 10;

或者像下面这个不带任何条件的分页SQL:

SELECT * FROM `t1` ORDER BY id DESC LIMIT 100, 10;

一般而言,分页SQL的耗时随着 start 值的增加而急剧增加,我们来看下面这2个不同起始值的分页SQL执行耗时:

yejr@imysql.com> SELECT * FROM `t1` WHERE ftype=1 ORDER BY id DESC LIMIT 500, 10;
… 10 rows in set (0.05 sec) yejr@imysql.com> SELECT * FROM `t1` WHERE ftype=6 ORDER BY id DESC LIMIT 935500, 10;
… 10 rows in set (2.39 sec)

可以看到,随着分页数量的增加,SQL查询耗时也有数十倍增加,显然不科学。今天我们就来分析下,如何能优化这个分页方案。 一般滴,想要优化分页的终极方案就是:没有分页,哈哈哈~~~,不要说我讲废话,确实如此,可以把分页算法交给Sphinx、Lucence等第三方解决方案,没必要让MySQL来做它不擅长的事情。 当然了,有小伙伴说,用第三方太麻烦了,我们就想用MySQL来做这个分页,咋办呢?莫急,且待我们慢慢分析,先看下表DDL、数据量、查询SQL的执行计划等信息:

yejr@imysql.com> SHOW CREATE TABLE `t1`;
CREATE TABLE `t1` (
`id` int(10) unsigned NOT NULL AUTO_INCREMENT,
...
`ftype` tinyint(3) unsigned NOT NULL,
...
PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8; yejr@imysql.com> select count(*) from t1;
+----------+
| count(*) |
+----------+
| 994584 |
+----------+ yejr@imysql.com> EXPLAIN SELECT * FROM `t1` WHERE ftype=1 ORDER BY id DESC LIMIT 500, 10\G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: t1
type: index
possible_keys: NULL
key: PRIMARY
key_len: 4
ref: NULL
rows: 510
Extra: Using where yejr@imysql.com> EXPLAIN SELECT * FROM `t1` WHERE ftype=1 ORDER BY id DESC LIMIT 935500, 10\G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: t1
type: index
possible_keys: NULL
key: PRIMARY
key_len: 4
ref: NULL
rows: 935510
Extra: Using where

可以看到,虽然通过主键索引进行扫描了,但第二个SQL需要扫描的记录数太大了,而且需要先扫描约935510条记录,然后再根据排序结果取10条记录,这肯定是非常慢了。 针对这种情况,我们的优化思路就比较清晰了,有两点:

1、尽可能从索引中直接获取数据,避免或减少直接扫描行数据的频率
2、尽可能减少扫描的记录数,也就是先确定起始的范围,再往后取N条记录即可

据此,我们有两种相应的改写方法:子查询、表连接,即下面这样的:

#采用子查询的方式优化,在子查询里先从索引获取到最大id,然后倒序排,再取10行结果集
#注意这里采用了2次倒序排,因此在取LIMIT的start值时,比原来的值加了10,即935510,否则结果将和原来的不一致
yejr@imysql.com> EXPLAIN SELECT * FROM (SELECT * FROM `t1` WHERE id > ( SELECT id FROM `t1` WHERE ftype=1 ORDER BY id DESC LIMIT 935510, 1) LIMIT 10) t ORDER BY id DESC\G
*************************** 1. row ***************************
id: 1
select_type: PRIMARY
table: <derived2>
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 10
Extra: Using filesort
*************************** 2. row ***************************
id: 2
select_type: DERIVED
table: t1
type: ALL
possible_keys: PRIMARY
key: NULL
key_len: NULL
ref: NULL
rows: 973192
Extra: Using where
*************************** 3. row ***************************
id: 3
select_type: SUBQUERY
table: t1
type: index
possible_keys: NULL
key: PRIMARY
key_len: 4
ref: NULL
rows: 935511
Extra: Using where #采用INNER JOIN优化,JOIN子句里也优先从索引获取ID列表,然后直接关联查询获得最终结果,这里不需要加10
yejr@imysql.com> EXPLAIN SELECT * FROM `t1` INNER JOIN ( SELECT id FROM `t1` WHERE ftype=1 ORDER BY id DESC LIMIT 935500,10) t2 USING (id)\G
*************************** 1. row ***************************
id: 1
select_type: PRIMARY
table: <derived2>
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 935510
Extra: NULL
*************************** 2. row ***************************
id: 1
select_type: PRIMARY
table: t1
type: eq_ref
possible_keys: PRIMARY
key: PRIMARY
key_len: 4
ref: t2.id
rows: 1
Extra: NULL
*************************** 3. row ***************************
id: 2
select_type: DERIVED
table: t1
type: index
possible_keys: NULL
key: PRIMARY
key_len: 4
ref: NULL
rows: 973192
Extra: Using where

然后我们来对比下这2个优化后的新SQL执行时间:

yejr@imysql.com> SELECT * FROM (SELECT * FROM `t1` WHERE id > ( SELECT id FROM `t1` WHERE ftype=1 ORDER BY id DESC LIMIT 935510, 1) LIMIT 10) T ORDER BY id DESC;
...
rows in set (1.86 sec)
#采用子查询优化,从profiling的结果来看,相比原来的那个SQL快了:28.2% yejr@imysql.com> SELECT * FROM `t1` INNER JOIN ( SELECT id FROM `t1` WHERE ftype=1 ORDER BY id DESC LIMIT 935500,10) t2 USING (id);
...
10 rows in set (1.83 sec)
#采用INNER JOIN优化,从profiling的结果来看,相比原来的那个SQL快了:30.8%

我们再来看一个不带过滤条件的分页SQL对比:

#原始SQL
yejr@imysql.com> EXPLAIN SELECT * FROM `t1` ORDER BY id DESC LIMIT 935500, 10\G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: t1
type: index
possible_keys: NULL
key: PRIMARY
key_len: 4
ref: NULL
rows: 935510
Extra: NULL yejr@imysql.com> SELECT * FROM `t1` ORDER BY id DESC LIMIT 935500, 10;
...
10 rows in set (2.22 sec) #采用子查询优化
yejr@imysql.com> EXPLAIN SELECT * FROM (SELECT * FROM `t1` WHERE id > ( SELECT id FROM `t1` ORDER BY id DESC LIMIT 935510, 1) LIMIT 10) t ORDER BY id DESC;
*************************** 1. row ***************************
id: 1
select_type: PRIMARY
table: <derived2>
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 10
Extra: Using filesort
*************************** 2. row ***************************
id: 2
select_type: DERIVED
table: t1
type: ALL
possible_keys: PRIMARY
key: NULL
key_len: NULL
ref: NULL
rows: 973192
Extra: Using where
*************************** 3. row ***************************
id: 3
select_type: SUBQUERY
table: t1
type: index
possible_keys: NULL
key: PRIMARY
key_len: 4
ref: NULL
rows: 935511
Extra: Using index yejr@imysql.com> SELECT * FROM (SELECT * FROM `t1` WHERE id > ( SELECT id FROM `t1` ORDER BY id DESC LIMIT 935510, 1) LIMIT 10) t ORDER BY id DESC;

10 rows in set (2.01 sec)
#采用子查询优化,从profiling的结果来看,相比原来的那个SQL快了:10.6% #采用INNER JOIN优化
yejr@imysql.com> EXPLAIN SELECT * FROM `t1` INNER JOIN ( SELECT id FROM `t1`ORDER BY id DESC LIMIT 935500,10) t2 USING (id)\G
*************************** 1. row ***************************
id: 1
select_type: PRIMARY
table:
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 935510
Extra: NULL
*************************** 2. row ***************************
id: 1
select_type: PRIMARY
table: t1
type: eq_ref
possible_keys: PRIMARY
key: PRIMARY
key_len: 4
ref: t1.id
rows: 1
Extra: NULL
*************************** 3. row ***************************
id: 2
select_type: DERIVED
table: t1
type: index
possible_keys: NULL
key: PRIMARY
key_len: 4
ref: NULL
rows: 973192
Extra: Using index yejr@imysql.com> SELECT * FROM `t1` INNER JOIN ( SELECT id FROM `t1`ORDER BY id DESC LIMIT 935500,10) t2 USING (id);

10 rows in set (1.70 sec)
#采用INNER JOIN优化,从profiling的结果来看,相比原来的那个SQL快了:30.2%

至此,我们看到采用子查询或者INNER JOIN进行优化后,都有大幅度的提升,这个方法也同样适用于较小的分页,虽然LIMIT开始的 start 位置小了很多,SQL执行时间也快了很多,但采用这种方法后,带WHERE条件的分页分别能提高查询效率:24.9%、156.5%,不带WHERE条件的分页分别提高查询效率:554.5%、11.7%,各位可以自行进行测试验证。单从提升比例说,还是挺可观的,确保这些优化方法可以适用于各种分页模式,就可以从一开始就是用。 我们来看下各种场景相应的提升比例是多少:

  大分页,带WHERE 大分页,不带WHERE 大分页平均提升比例 小分页,带WHERE 小分页,不带WHERE 总体平均提升比例
子查询优化 28.20% 10.60% 19.40% 24.90% 554.40% 154.53%
INNER JOIN优化 30.80% 30.20% 30.50% 156.50% 11.70% 57.30%

结论:这样看就和明显了,尤其是针对大分页的情况,因此我们优先推荐使用INNER JOIN方式优化分页算法, 核心在于

子查询:

SELECT id FROM `t1`ORDER BY id DESC LIMIT 935500,10 利用 select id 比 select * 查询速度快

SELECT * FROM `t1` WHERE id > ?

inner join :

SELECT id FROM `t1`ORDER BY id DESC LIMIT 935500,10

例:

asc:

SELECT * FROM `peizi_stat` WHERE path = 1 order by id asc limit 100000,10

SELECT * FROM `peizi_stat` WHERE id >= (select id from peizi_stat where path=1 limit 100000,1) and path=1 ORDER BY id asc limit 10

SELECT * FROM `peizi_stat` s inner join (select id from peizi_stat where path=1 limit 100000,10) t USING(id) ORDER BY id asc

desc:

SELECT * FROM `peizi_stat` WHERE path = 1 order by id desc limit 100000,10

select * from (SELECT * FROM `peizi_stat` WHERE id > (select id from peizi_stat where path=1 order by id desc limit 100010,1) and path=1 limit 10) t order by id desc

SELECT * FROM `peizi_stat` s inner join (select id from peizi_stat where path=1 order by id desc limit 100000,10) t USING(id)

感觉用 inner join 好使点!!!

上述每次测试都重启mysqld实例,并且加了SQL_NO_CACHE,以保证每次都是直接数据文件或索引文件中读取。如果数据经过预热后,查询效率会一定程度提升,但但上述相应的效率提升比例还是基本一致的。

2014/07/28后记更新:

其实如果是不带任何条件的分页,就没必要用这么麻烦的方法了,可以采用对主键采用范围检索的方法,例如参考这篇:Advance for MySQL Pagination

From: http://imysql.com/2014/07/26/mysql-optimization-case-paging-optimize.shtml

[MySQL优化案例]系列 — 分页优化的更多相关文章

  1. [MySQL优化案例]系列 — RAND()优化

    众所周知,在MySQL中,如果直接 ORDER BY RAND() 的话,效率非常差,因为会多次执行.事实上,如果等值查询也是用 RAND() 的话也如此,我们先来看看下面这几个SQL的不同执行计划和 ...

  2. Mysql优化实践(分页优化)

    当你和别人都能实现一个某个功能,这时候区分你们能力的不是谁干活多少,而是谁能写出效率更高的代码.比如显示一个订单列表它不仅仅是写一条SELECT SQL那么简单,我们还需要很清楚的知道这条SQL他大概 ...

  3. [MySQL优化案例]系列 — slave延迟很大优化方法

    备注:插图来自网络搜索,如果觉得不当还请及时告知 :) 一般而言,slave相对master延迟较大,其根本原因就是slave上的复制线程没办法真正做到并发.简单说,在master上是并发模式(以In ...

  4. [MySQL优化案例]系列 — 优化InnoDB表BLOB列的存储效率

    首先,介绍下关于InnoDB引擎存储格式的几个要点:1.InnoDB可以选择使用共享表空间或者是独立表空间方式,建议使用独立表空间,便于管理.维护.启用 innodb_file_per_table 选 ...

  5. SQL优化案例—— RowNumber分页

    将业务语句翻译成SQL语句不仅是一门技术,还是一门艺术. 下面拿我们程序开发工程师最常用的ROW_NUMBER()分页作为一个典型案例来说明. 先来看看我们最常见的分页的样子: WITH CTE AS ...

  6. MySQL的LIMIT与分页优化

    在系统中需要进行分页操作的时候,我们通常会使用LIMIT加上偏移量的办法实现,同时加上合适的ORDER BY子句.如果有对应的索引,通常效率会不错,否则,MySQL需要做大量的文件排序操作. 一个非常 ...

  7. MySQL 大数据量分页优化

    假设有一个千万量级的表,取1到10条数据: ,; ,; 这两条语句查询时间应该在毫秒级完成: ,; 你可能没想到,这条语句执行之间在5s左右: 为什么相差这么大? 可能mysql并没有你想的那么智能, ...

  8. Mysql大数据量分页优化

    假设有一个千万量级的表,取1到10条数据: select * from table limit 0,10; select * from table limit 1000,10; 这两条语句查询时间应该 ...

  9. mysql优化案例

    MySQL优化案例 Mysql5.1大表分区效率测试 Mysql5.1大表分区效率测试MySQL | add at 2009-03-27 12:29:31 by PConline | view:60, ...

随机推荐

  1. 网络银行木马DYRE知多少(1)

    watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvaXF1c2hp/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/d ...

  2. [RxJS] exhaustMap vs switchMap vs concatMap

    exhaustMap: It drop the outter observable, just return the inner observable, and it waits until prev ...

  3. 使用markdown和gitblog搭建自己的博客

    GitBlog官网 GitBlog文档 Gitblog官方QQ群:84692078 GitBlog是一个简单易用的Markdown博客系统.它不须要数据库,没有管理后台功能,更新博客仅仅须要加入你写好 ...

  4. poj 1837 Balance (0 1 背包)

    Balance Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 10326   Accepted: 6393 题意:给你n个挂 ...

  5. Android studio 报错 gradel project sync failed Error:Cause: peer not authenticated

    在网上找了半天,应该是找不到gradel的路径,试了网上非常多方法.本人解决例如以下: 在android studio中设置gradle.打开File-> settings->Gradle ...

  6. MapReduce:具体解释Shuffle过程

    Shuffle过程是MapReduce的核心,也被称为奇迹发生的地方.要想理解MapReduce, Shuffle是必需要了解的.我看过非常多相关的资料,但每次看完都云里雾里的绕着,非常难理清大致的逻 ...

  7. WPF学习笔记——在“System.Windows.StaticResourceExtension”上提供值时引发了异常

    在"System.Windows.StaticResourceExtension"上提供值时引发了异常 因应需要,写了一个转换器,然后窗体上引用,结果就出来这个错.编译的时候没事, ...

  8. MessagePack 新型序列化反序列化方案

    进入在学习redis的时候,在文中看到了关于MessagePack的简介,发现非常有意思,于是就花了点时间大致了解了下. MessagePack介绍: MessagePack is an effici ...

  9. html body中的标签

    HTML中的标签有两类 一.字体标签 字体标签包含:h1~h6.<font>.<u>.<b>.<strong><em>.<sup> ...

  10. 5.7 Maven通俗讲解

    好的东西只适合ctry+c+v 原文地址:https://blog.csdn.net/shuzhe66/article/details/45009175 Maven通俗讲解 也许是本人不才,初识Mav ...