设\(l[i]\)为i左边第一个比i大的数的下标。\(r[i]\)为i右边第一个比i大的数的下标。

我们把\(p1,p2\)分开考虑。

当产生贡献为\(p1\)时\(i\)和\(j\)一定满足,分别为\(l[x],r[x]\)枚举每一个值为\(i\),\(j\)之间最大值可证。

党产生贡献为\(p2\)时\(i\)和\(j\)满足分别为\(l[x],[x+1,r[x]-1]\)或\([l[x]+1,x-1],r[x]\),此时\(a[x]\)为\(i\),\(j\)之间最大值,\(i\),\(j\)一个比\(a[x]\)大,一个比\(a[x]\)小。

然后就把问题转化为二维数点问题。产生贡献的点对对应坐标系中的一个点(为了避免重复计数如\((r[x],l[x])\)和\((l[x],r[x])\),可以把小的作为横坐标,大的作为纵坐标)。然后我们每一次询问就是横坐标在\([l,r]\)之间,纵坐标在\([l,r]\)之间的权值和。

然后就可以用主席树做了。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<vector>
using namespace std;
#define int long long
const int N=201000;
struct line{ int l,r,w; };
vector<line> vec[N];
int tot,root[N],lazy[N*70],ch[N*70][2],sum[N*70];
int n,m,p1,p2,a[N],stack[N],top,l[N],r[N];
void add(int l,int r,int L,int R,int w,int pre,int &now){
now=++tot;
ch[now][0]=ch[pre][0];
ch[now][1]=ch[pre][1];
lazy[now]=lazy[pre];
sum[now]=sum[pre]+(R-L+1)*w;
if(l==L&&r==R){
lazy[now]+=w;
return;
}
int mid=(l+r)>>1;
if(L>mid)add(mid+1,r,L,R,w,ch[pre][1],ch[now][1]);
else if(R<=mid)add(l,mid,L,R,w,ch[pre][0],ch[now][0]);
else{
add(l,mid,L,mid,w,ch[pre][0],ch[now][0]);
add(mid+1,r,mid+1,R,w,ch[pre][1],ch[now][1]);
}
}
int check(int l,int r,int L,int R,int pre,int now){
if(l==L&&r==R)return sum[now]-sum[pre];
int mid=(l+r)>>1;
if(L>mid)return (lazy[now]-lazy[pre])*(R-L+1)+check(mid+1,r,L,R,ch[pre][1],ch[now][1]);
else if(R<=mid)return (lazy[now]-lazy[pre])*(R-L+1)+check(l,mid,L,R,ch[pre][0],ch[now][0]);
else return (lazy[now]-lazy[pre])*(R-L+1)
+check(l,mid,L,mid,ch[pre][0],ch[now][0])
+check(mid+1,r,mid+1,R,ch[pre][1],ch[now][1]);
}
int read(){
int sum=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){sum=sum*10+ch-'0';ch=getchar();}
return sum*f;
}
signed main(){
n=read(),m=read(),p1=read(),p2=read();
for(int i=1;i<=n;i++)a[i]=read();
for(int i=1;i<=n;i++){
while(a[i]>a[stack[top]]&&top)r[stack[top--]]=i;
stack[++top]=i;
}
while(top)r[stack[top--]]=n+1;
for(int i=n;i>=1;i--){
while(a[i]>a[stack[top]]&&top)l[stack[top--]]=i;
stack[++top]=i;
}
while(top)l[stack[top--]]=0;
for(int i=1;i<=n;i++){
line x;
if(i!=n&&i+1<=r[i]-1){
x.l=i+1;x.r=r[i]-1;x.w=p2;
vec[l[i]].push_back(x);
}
if(l[i]+1<=i-1&&i!=1){
x.l=l[i]+1;x.r=i-1;x.w=p2;
vec[r[i]].push_back(x);
}
x.l=i;x.r=i;x.w=p1;
vec[l[i]].push_back(x);
vec[r[i]].push_back(x);
}
for(int i=1;i<=n;i++){
root[i]=root[i-1];
for(int j=0;j<vec[i].size();j++)
add(1,n,vec[i][j].l,vec[i][j].r,vec[i][j].w,root[i],root[i]);
}
for(int i=1;i<=m;i++){
int l=read(),r=read();
printf("%lld\n",check(1,n,l,r,root[l-1],root[r]));
}
return 0;
}

[AH2017/HNOI2017]影魔(主席树+单调栈)的更多相关文章

  1. bzoj 4826: [Hnoi2017]影魔 [主席树 单调栈]

    4826: [Hnoi2017]影魔 题意:一个排列,点对\((i,j)\),\(p=max(i+1,j-1)\),若\(p<a_i,a_j\)贡献p1,若\(p\)在\(a_1,a_2\)之间 ...

  2. 【BZOJ3956】Count 主席树+单调栈

    [BZOJ3956]Count Description Input Output Sample Input 3 2 0 2 1 2 1 1 1 3 Sample Output 0 3 HINT M,N ...

  3. [BZOJ4826][HNOI2017]影魔(主席树)

    4826: [Hnoi2017]影魔 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 669  Solved: 384[Submit][Status][ ...

  4. 洛谷P3722 [AH2017/HNOI2017]影魔(线段树)

    题意 题目链接 Sol 题解好神仙啊qwq. 一般看到这种考虑最大值的贡献的题目不难想到单调数据结构 对于本题而言,我们可以预处理出每个位置左边第一个比他大的位置\(l_i\)以及右边第一个比他大的位 ...

  5. [AH2017/HNOI2017] 影魔 - 线段树

    #include<bits/stdc++.h> #define maxn 200010 using namespace std; int a[maxn],st[maxn][2],top,L ...

  6. Codeforces 781E Andryusha and Nervous Barriers 线段树 单调栈

    原文链接https://www.cnblogs.com/zhouzhendong/p/CF781E.html 题目传送门 - CF781E 题意 有一个矩形,宽为 w ,高为 h .一开始会有 w 个 ...

  7. 洛谷P4425 转盘 [HNOI/AHOI2018] 线段树+单调栈

    正解:线段树+单调栈 解题报告: 传送门! 1551又是一道灵巧连题意都麻油看懂的题,,,,所以先解释一下题意好了,,,, 给定一个n元环 可以从0时刻开始从任一位置出发 每次可以选择向前走一步或者在 ...

  8. 线段树+单调栈+前缀和--2019icpc南昌网络赛I

    线段树+单调栈+前缀和--2019icpc南昌网络赛I Alice has a magic array. She suggests that the value of a interval is eq ...

  9. 牛客多校第四场sequence C (线段树+单调栈)

    牛客多校第四场sequence C (线段树+单调栈) 传送门:https://ac.nowcoder.com/acm/contest/884/C 题意: 求一个$\max {1 \leq l \le ...

随机推荐

  1. RocketMQ学习笔记(12)----RocketMQ的Consumer API简介

    由于消息的消费方式有两种,所以两种方式也有不同的API: 1. PushConsumer的配置 1. consumerGroup: 默认值为DEFAULT_CONSUMER,Consumer组名,多个 ...

  2. 路飞学城Python-Day50

    05-运算符 常用运算符 算数运算符 赋值运算符 比较运算符 逻辑运算符         // 赋值运算符          var money = prompt('请输入金额');          ...

  3. (fields.E304) Reverse accessor for 'UserProfile.groups' clashes with reverse accessor for 'User.groups'.

    创建数据库models.py,在进行数据迁移时抛出一下异常: E:\Project\GuoJia>python manage.py makemigrations SystemCheckError ...

  4. sort函数用法详解

    用于C++中,对给定区间所有元素进行排序.头文件是#include <algorithm> sort函数进行快速排序,时间复杂度为n*log2n,比冒泡之类的要省时不少 Sort函数使用模 ...

  5. Linux150个命令

    命令 功能说明 线上查询及帮助命令(2个) man 查看命令帮助,命令的词典,更复杂的还有info,但不常用. help 查看Linux内置命令的帮助,比如cd命令. 文件和目录操作命令(18个) l ...

  6. invalid application of `sizeof' to incomplete type `char[] '

    在写代码时,我想用extern来关联一个数组,然后利用sizeof计算数组的大小,代码如下: ... extern char a[]; #define b size=(sizeof(a)/sizeof ...

  7. 常用的ES6方法

    常用的ES6方法 ES6之后,新增了定义变量的两个关键字,分别是let和const. let和const都能够声明块级作用域,用法和var是类似的,let的特点是不会变量提升,而是被锁在当前块中. 实 ...

  8. 06002_Redis概述

    1.什么是Redis? (1)Redis是用C语言开发的一个开源的高性能键值对(key-value)数据库,他通过提供多种键值对数据类型类适应不同场景下的存储需求: (2)Redis是一种高级的key ...

  9. jquery-jquery异步提交表单插件

    使用jquery.form可以异步提交文件或者表单,下面的代码演示了如何提交文件 http://apps.bdimg.com/libs/jquery/2.1.1/jquery.min.js <s ...

  10. stl里面stack的注意事项

    1. pop是不返回元素的.因为不能返回引用,只能返回实例.而这个实例是在函数里面初始化的,所以必须在外面再赋值和初始化.而如果实例复制失败,会产生丢失. 2. 而top是可以返回引用的.实际上,返回 ...