HDU 1576 A/B( 逆元水 )
**链接:****传送门 **
思路:
- 现在给出 n = A % 9973,n = A - A/9973×9973,已知 B|A ,设 A = Bx,可以得到如下形式的式子:Bx + 9973×y = n ,因为gcd( B , 9973 ) = 1,所以可以用 exgcd 来求出 Bx + 9973×y = 1 的 x 值,A/B = x * n ,所以最后的答案就是 ( x * n%MOD + MOD ) %MOD
/*************************************************************************
> File Name: hdu1576.cpp
> Author: WArobot
> Blog: http://www.cnblogs.com/WArobot/
> Created Time: 2017年05月10日 星期三 22时54分37秒
************************************************************************/
#include<bits/stdc++.h>
using namespace std;
const int MOD = 9973;
int exgcd(int a,int b,int &x,int &y){
if(b==0){
x = 1; y = 0; return a;
}
int d = exgcd(b,a%b,x,y);
int tmp = x;
x = y; y = tmp - a/b*y;
return d;
}
int main(){
int t,n,B;
scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&B);
int x , y;
int d = exgcd(B,MOD,x,y);
x *= n;
printf("%d\n", (x%MOD + MOD)%MOD );
}
return 0;
}
HDU 1576 A/B( 逆元水 )的更多相关文章
- HDU 1576 A/B 数论水题
http://acm.hdu.edu.cn/showproblem.php?pid=1576 写了个ex_gcd的模板...太蠢导致推了很久的公式 这里推导一下: 因为 1 = BX + 9973Y ...
- hdu 1576 A/B
原题链接:hdu 1576 A/B 同样是用扩展的欧几里得算法.A = 9973k+n = xB,从而转化为:xB-9973k=n求解x即可. 具体扩展欧几里得算法请参考:hdu 2669 Roman ...
- HDU 1576 (乘法逆元)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1576 题目大意:求(A/B)mod 9973.但是给出的A是mod形式n,n=A%9973. 解题思 ...
- hdu 1576 求逆元
题意:给出n=A mod 9973和B,求(A/B) mod 9973 昨天用扩展欧几里得做过这题,其实用逆元也可以做. 逆元的定义:例如a*b≡1 (mod m),则b就是a关于m的逆元. 求逆元方 ...
- hdu 1576 A/B 【扩展欧几里得】【逆元】
<题目链接> <转载于 >>> > A/B Problem Description 要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)( ...
- 题解报告:hdu 1576 A/B(exgcd、乘法逆元+整数快速幂)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1576 Problem Description 要求(A/B)%9973,但由于A很大,我们只给出n(n ...
- 【hdu 1576】A/B(数论--拓展欧几里德 求逆元 模版题)
题意:给出 A%9973 和 B,求(A/B)%9973的值. 解法:拓展欧几里德求逆元.由于同余的性质只有在 * 和 + 的情况下一直成立,我们要把 /B 转化为 *B-1,也就是求逆元. 对于 B ...
- hdu 1576 A/B (求逆元)
题目链接 Problem Description 要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)(我们给定的A必能被B整除,且gcd(B,9973) = 1). Inpu ...
- hdu 1576(逆元)
A/B Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
随机推荐
- Bind for 0.0.0.0:80 failed: port is already allocated.解决方案
一句话总结就是容器占用的port还没有完全释放 查看进程,发现相关的容器并没有在运行,而 docker-proxy 却依然绑定着端口: $ docker ps 检查docker镜像 $ ps -aux ...
- HDU 5322 Hope (分治NTT优化DP)
题面传送门 题目大意: 假设现在有一个排列,每个数和在它右面第一个比它大的数连一条无向边,会形成很多联通块. 定义一个联通块的权值为:联通块内元素数量的平方. 定义一个排列的权值为:每个联通块的权值之 ...
- Redis-Cluster集群原理
一.redis-cluster 官方推荐的 redis 集群解决方案,优点在于去中心化, 去中间件,也就是说,集群中的每个节点都是平等的关系,都是对等的,每个节点都保存各自的数据和整个集群的状态.每个 ...
- 在Eclipse中搭建Dagger和Dagger2使用环境
眼下Dagger有两个版本号,一个是square的Dagger1.x,另外一个是由google主导与squre联合开发的Dagger2. 本文介绍一下在Eclipse中搭建Dagger和Dagger2 ...
- auto_ptr的使用和注意
参考: http://www.cnblogs.com/qytan36/archive/2010/06/28/1766555.html
- Window7幻灯片字体显示混乱,难道真的是病毒么
这个问题有几天了.就是在其它人的PowerPoint2010做的ppt文件.发到这台有问题的电脑上(PowerPoint2007)就会显示全然不一样.例如以下所看到的. watermark/2/tex ...
- 精简Linux文件路径
精简Linux的文件路径: ..回退的功能 .留在当前文件夹 //仅仅保留一个/ abc/..要返回. 报错 删除最后一个/ 主要思路: 用栈记录路径的起始位置,讨论/后的不同情况就可以: #incl ...
- Object::connect: Cannot queue arguments of type 'QMap<QString,QString>'(要使用qRegisterMetaType<StringMap>进行注册)
QObject::connect: Cannot queue arguments of type 'QMap<QString,QString>',(Make sure 'QMap<Q ...
- MySql悲观锁总结与实践
mysql(for update)悲观锁总结与实践 https://blog.csdn.net/zmx729618/article/details/52701972 悲观锁,正如其名,它指的是对数据被 ...
- Regexp-Utils:银行卡号Luhm校验
ylbtech-Regexp-Utils:银行卡号Luhm校验 1.返回顶部 1.方法 //Description: 银行卡号Luhm校验 //Luhm校验规则:16位银行卡号(19位通用): // ...