[ACM] HDU 1400 Mondriaan's Dream (状态压缩,长2宽1长方形铺满)
Mondriaan's Dream
Time Limit: 20000/10000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 783 Accepted Submission(s): 506
squares and rectangles), he dreamt of filling a large rectangle with small rectangles of width 2 and height 1 in varying ways.

Expert as he was in this material, he saw at a glance that he'll need a computer to calculate the number of ways to fill the large rectangle whose dimensions were integer values, as well. Help him, so that his dream won't turn into a nightmare!

1 2
1 3
1 4
2 2
2 3
2 4
2 11
4 11
0 0
1
0
1
2
3
5
144
51205
解题思路:
如图:问铺满大举行一共同拥有多少种方法。
由于长宽最大11,能够状态压缩.
从第一行開始铺砖。
dp[ i ] [ j ] 定义为 第i行的状态为 j 一共同拥有多少种方法 .
把小矩形用01状态表示,小矩形由两个正方形组成。 对于横着放的小矩形,左右两个正方形用11表示,对于竖着的小矩形,上下两个正方形用分别01表示。
第i行的状态s2与第i-1行的状态s1有关。
s1和s2满足两个条件:
1. s1 | s2 得到的数二进制每一位都是1 ,由于对于竖着放的 ,0|1肯定是1,横着放的都是11,相或也是11.
2. s1 & s2 得到的数连续的1是偶数个,注意0也是偶数。这个看图观察就能够了。
本题犯的错误:
1.
获取一个数x二进制的第i位是0或者1。用 if( x&(1<<i) ==1) 是不正确的, 这句话的意思是,把x的二进制数除了第i位都设为0,第i位通过 &1,来推断是0或者1,可是得到的数不一定是1,是2的倍数,比方 0010 或者 0100.
2.
推断一个数x二进制的每一位是否等于1 ,如果有m位 , 直接用 if( x==1<<m)-1),不用每一位的推断。前者效率更高。
代码:
#include <iostream>
#include <stdlib.h>
#include <stdio.h>
#include <vector>
#include <algorithm>
#include <string.h>
using namespace std;
#define ll long long
ll dp[12][1<<12];//dp[i][j]表示第i行状态为j有多少种方法
int n,m; bool ok(int s1,int s2)
{
int temp=s1|s2;//两个状态或运算每一位都必须是1
if(temp!=(1<<m)-1)
return false;
int cnt=0;
temp=s1&s2;//两个状态且运算,必须连续的1都是偶数个
for(int i=0;i<m;i++)
{
if((temp&(1<<i)))//第i位是1
cnt++;
else
{
if(cnt&1)
return false;
}
}
if(cnt&1)
return false;
return true;
} void solve()
{
memset(dp,0,sizeof(dp));
int maxd=1<<m;
for(int i=0;i<maxd;i++)//铺第一行
if(ok(maxd-1,i))
dp[1][i]++;
for(int i=2;i<=n;i++)//铺第i行
{
for(int j=0;j<maxd;j++)
{
for(int k=0;k<maxd;k++)
if(ok(j,k))
dp[i][j]+=dp[i-1][k];
}
}
ll ans=0;
ans+=dp[n][maxd-1];//最后一行肯定都是1
printf("%I64d\n",ans);
} int main()
{
while(scanf("%d%d",&n,&m)!=EOF)
{
if(!n||!m)
break;
if(n*m&1)//小方块的个数为奇数个,肯定不能铺满
{
printf("0\n");
continue;
}
if(n<m)
n=n^m,m=n^m,n=n^m;
solve();
}
return 0;
}
[ACM] HDU 1400 Mondriaan's Dream (状态压缩,长2宽1长方形铺满)的更多相关文章
- [ACM] HDU 5025 Saving Tang Monk (状态压缩,BFS)
Saving Tang Monk Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) ...
- hdu 4057 AC自己主动机+状态压缩dp
http://acm.hdu.edu.cn/showproblem.php?pid=4057 Problem Description Dr. X is a biologist, who likes r ...
- hdu 1400 Mondriaan's Dream 解题报告
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1400 题目意思:给出一个h * w的 大 矩形,需要用 1 * 2 的砖块去填充这个大矩形,问填充的方 ...
- HDU - 1400 Mondriaan's Dream
HDU - 1400 思路: 轮廓线dp入门题 #include<bits/stdc++.h> using namespace std; #define fi first #define ...
- POJ 2411 Mondriaan's Dream
状压DP Mondriaan's Dream Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 9938 Accepted: 575 ...
- poj 2411 Mondriaan's Dream 【dp】
题目:id=2411" target="_blank">poj 2411 Mondriaan's Dream 题意:给出一个n*m的矩阵,让你用1*2的矩阵铺满,然 ...
- POJ2411 - Mondriaan's Dream(状态压缩DP)
题目大意 给定一个N*M大小的地板,要求你用1*2大小的砖块把地板铺满,问你有多少种方案? 题解 刚开始时看的是挑战程序设计竞赛上的关于铺砖块问题的讲解,研究一两天楞是没明白它代码是怎么写的,智商捉急 ...
- POJ 2411 Mondriaan's Dream (dp + 减少国家)
链接:http://poj.org/problem?id=2411 题意:题目描写叙述:用1*2 的矩形通过组合拼成大矩形.求拼成指定的大矩形有几种拼法. 參考博客:http://blog.csdn. ...
- zoj 1100 - Mondriaan's Dream
题目:在m*n的地板上铺上同样的1*2的地板砖,问有多少种铺法. 分析:dp,组合,计数.经典dp问题,状态压缩. 状态:设f(i,j)为前i-1行铺满,第i行铺的状态的位表示为j时的铺砖种类数: 转 ...
随机推荐
- 20130907.Git学习记录
1.任何文件在Git内都只有三种状态: ①已提交(committed):已提交表示该文件已经被安全地保存在本地数据库中了: ②已修改(modified):已修改表示修改了某个文件,但还没有提交保存: ...
- HDU 3073 Saving Beans
Saving Beans Time Limit: 3000ms Memory Limit: 32768KB This problem will be judged on HDU. Original I ...
- codevs 1803 志愿者招募
1803 志愿者招募 2008年NOI全国竞赛 时间限制: 2 s 空间限制: 128000 KB 题目等级 : 大师 Master 题目描述 Description 申奥成功后,布布经过不懈努 ...
- Oracle安装和使用说明
很久没有安装Oracle了,今天试了一下重新安装Oracle,然后做了一个总结: 一.Oracle 下载 注意Oracle分成两个文件,下载完后,将两个文件解压到同一目录下即可. 路径名称中,最好不要 ...
- 本书已出版<拨云见日:基于android的内核与系统架构源代码分析 >
已陆续倒到各大电商站点及新华书店 http://item.jd.com/11594135.html http://product.china-pub.com/4472138 http://www.am ...
- Android动态载入JAR包的实现方法
有时候我们须要使用动态更新技术,简单来说就是:当我们把开发jar包发送给用户后.假设后期升级了部分代码.这时让用户的jar包自己主动更新,而不是用户主动手动地去更新的技术就是动态更新.这个须要使用的技 ...
- world 替换+正则表达式命令
打开替换命令,点击“更多”,勾选上“通配符”,正则表达式才会起作用
- 基于FPGA的跨时钟域信号处理——专用握手信号
在逻辑设计领域,只涉及单个时钟域的设计并不多.尤其对于一些复杂的应用,FPGA往往需要和多个时钟域的信号进行通信.异步时钟域所涉及的两个时钟之间可能存在相位差,也可能没有任何频率关系,即通常所说的不同 ...
- angular4中日期格式的用法
dateTime: Date; this.dataTime = new Date(); // 获取当前日期 // Wed Apr 18 2018 10:54:47 GMT+0800 (中国标准时间) ...
- Microsoft Edge 针对 Web 开发人员更新日志
Windows 10 build16215 之 Edge 新功能 新功能: 增加了对高级事件监听器的支持(“once”和“passive”)via 增加了对CSS object-fit/object- ...