Description

我的室友最近喜欢上了一个可爱的小女生。马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一
个送给她。每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度。但是在她生日的前一天,我的室友突
然发现他好像拿错了一个手环,而且已经没时间去更换它了!他只能使用一种特殊的方法,将其中一个手环中所有
装饰物的亮度增加一个相同的自然数 c(即非负整数)。并且由于这个手环是一个圆,可以以任意的角度旋转它,
但是由于上面 装饰物的方向是固定的,所以手环不能翻转。需要在经过亮度改造和旋转之后,使得两个手环的差
异值最小。在将两个手环旋转且装饰物对齐了之后,从对齐的某个位置开始逆时针方向对装饰物编号 1,2,…,n,
其中 n 为每个手环的装饰物个数,第 1 个手环的 i 号位置装饰物亮度为 xi,第 2 个手 环的 i 号位置装饰物
亮度为 yi,两个手环之间的差异值为(参见输入输出样例和样例解释): \sum_{i=1}^{n}(x_i-y_i)^2麻烦你帮他
计算一下,进行调整(亮度改造和旋转),使得两个手环之间的差异值最小, 这个最小值是多少呢?

Input

输入数据的第一行有两个数n, m,代表每条手环的装饰物的数量为n,每个装饰物的初始 亮度小于等于m。
接下来两行,每行各有n个数,分别代表第一条手环和第二条手环上从某个位置开始逆时 针方向上各装饰物的亮度。
1≤n≤50000, 1≤m≤100, 1≤ai≤m

Output

输出一个数,表示两个手环能产生的最小差异值。
注意在将手环改造之后,装饰物的亮度 可以大于 m。

题解:

最小化 $\sum_{i=1}^{n}(x_{i}-y_{i}+c)^2$
 
$\Rightarrow \sum_{i=1}^{n}x_{i}^2+\sum_{i=1}^{n}y_{i}^2+2c(\sum_{i=1}^{n}x_{i}-\sum_{i=1}^{n}y_{i})+c^2-2\sum_{i=1}^{n}x_{i}y_{i+k}$
 
发现前面 $\sum_{i=1}^{n}x_{i}^2+\sum_{i=1}^{n}y_{i}^2$ 是定值,$2c(\sum_{i=1}^{n}x_{i}-\sum_{i=1}^{n}y_{i})+c^2$ 可以用二次函数解决
后面的 $\sum_{i=1}^{n}x_{i}y_{i+k}$ 可以令 $x$ 翻转,即 $x_{i}=x_{n-1-i}, \sum_{i=1}^{n}x_{n-1-i}y_{i+k}$
 
用 $FFT$ 加速多项式乘法,依次枚举这个 $k$,取一下最大值即可 
#include <bits/stdc++.h>
#define setIO(s) freopen(s".in","r",stdin)
#define maxn 3100000
#define ll long long
using namespace std;
namespace FFT
{
#define pi 3.1415926535898
struct cpx
{
double x,y;
cpx(double a=0,double b=0){x=a,y=b;}
};
cpx operator+(cpx a,cpx b) { return cpx(a.x+b.x,a.y+b.y); }
cpx operator-(cpx a,cpx b) { return cpx(a.x-b.x,a.y-b.y); }
cpx operator*(cpx a,cpx b) { return cpx(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x); }
void FFT(cpx *a,int n,int flag)
{
for(int i = 0,k = 0;i < n; ++i)
{
if(i > k) swap(a[i],a[k]);
for(int j = n >> 1;(k^=j)<j;j>>=1);
}
for(int mid=1;mid<n;mid<<=1)
{
cpx wn(cos(pi/mid),flag*sin(pi/mid)),x,y;
for(int j=0;j<n;j+=(mid<<1))
{
cpx w(1,0);
for(int k=0;k<mid;++k)
{
x = a[j+k],y=w*a[j+mid+k];
a[j+k]=x+y;
a[j+mid+k]=x-y;
w=w*wn;
}
}
}
if(flag==-1) for(int i=0;i<n;++i) a[i].x/=(double)n;
}
cpx A[maxn],B[maxn];
void mult(int *a,int *b,int len)
{
int m = 1;
while(m <= len) m <<= 1;
for(int i = 0;i < len; ++i) A[i].x = (double)a[i];
for(int i = 0;i < len; ++i) B[i].x = (double)b[i];
FFT(A,m,1),FFT(B,m,1);
for(int i = 0;i < m; ++i) A[i] = A[i] * B[i]; // , printf("%.2f\n",A[i].x);
FFT(A,m,-1);
for(int i = 0;i < len; ++i) a[i] = (int)(A[i].x + 0.5);
}
};
int arr[maxn],brr[maxn],n,m,t;
ll ans = 0;
int main()
{
// setIO("input");
scanf("%d%d",&n,&m);
for(int i = 0;i < n; ++i) scanf("%d",&arr[i]);
for(int i = 0;i < n; ++i) scanf("%d",&brr[i]);
for(int i = 0;i < n; ++i)
{
ans += 1ll*arr[i]*arr[i] + 1ll*brr[i]*brr[i];
t += brr[i]-arr[i];
}
int c1 = floor(t*1.0/n), c2 = ceil(t*1.0/n);
ans += min(1ll*c1*c1*n - 1ll*c1*2*t, 1ll*c2*c2*n - 1ll*c2*2*t);
reverse(&arr[0],&arr[n]);
for(int i = n;i < 2*n;++i) brr[i]=brr[i-n];
FFT::mult(brr,arr,3*n);
int tmp = 0;
for(int i = 0;i < n; ++i) tmp = max(tmp,brr[i + n]) ;
ans -= (tmp<<1);
printf("%lld\n",ans);
return 0;
}

  

BZOJ 4827: [Hnoi2017]礼物 FFT_多项式_卷积的更多相关文章

  1. bzoj 4827: [Hnoi2017]礼物 [fft]

    4827: [Hnoi2017]礼物 题意:略 以前做的了 化一化式子就是一个卷积和一些常数项 我记着确定调整值还要求一下导... #include <iostream> #include ...

  2. bzoj 4827: [HNOI2017]礼物 (FFT)

    一道FFT 然而据说暴力可以水70分 然而我省选的时候看到了直接吓傻了  连暴力都没打 太弱了啊QAQ emmmm 详细的拆开就看其他题解吧233 最后那一步卷积其实我一直没明白 后来画画图终于懂了 ...

  3. bzoj 4827 [Hnoi2017]礼物——FFT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4827 式子就是 \sum_{i=0}^{n-1}(a[ i ] - b[ i+k ] + c ...

  4. bzoj 4827 [Hnoi2017] 礼物 —— FFT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4827 首先,旋转对应,可以把 b 序列扩展成2倍,则 a 序列对应到的还是一段区间: 再把 ...

  5. bzoj 4827: [Hnoi2017]礼物【FFT】

    记得FFT要开大数组!!开到快MLE的那种!!我这个就是例子TAT,5e5都RE了 在这题上花的时间太多了,还是FFT不太熟练. 首先看70分的n方做法:从0下标开始存,先n--,把a数组倍增,然后枚 ...

  6. BZOJ:4827: [Hnoi2017]礼物

    [问题描述] 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一个送给她.每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度. 但是在她生日的 ...

  7. 【刷题】BZOJ 4827 [Hnoi2017]礼物

    Description 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一个送给她.每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度.但是在 ...

  8. BZOJ 4827 [Hnoi2017]礼物 ——FFT

    题目上要求一个循环卷积的最小值,直接破环成链然后FFT就可以了. 然后考虑计算的式子,可以分成两个部分分开计算. 前半部分FFT,后半部分扫一遍. #include <map> #incl ...

  9. 4827: [Hnoi2017]礼物

    4827: [Hnoi2017]礼物 链接 分析: 求最小的$\sum_{i=1}^{n}(x_i-y_i)^2$ 设旋转了j位,每一位加上了c. $\sum\limits_{i=1}^{n}(x_{ ...

随机推荐

  1. HDU 2795 Billboard (线段树+贪心)

    手动博客搬家:本文发表于20170822 21:30:17, 原地址https://blog.csdn.net/suncongbo/article/details/77488127 URL: http ...

  2. Nginx学习总结(2)——Nginx手机版和PC电脑版网站配置

    考虑到网站的在多种设备下的兼容性,有很多网站会有手机版和电脑版两个版本.访问同一个网站URL,当服务端识别出用户使用电脑访问,就打开电脑版的页面,用户如果使用手机访问,则会得到手机版的页面. 1.判断 ...

  3. poj 1523 求割点把一个图分成几个联通部分

    #include<stdio.h> #include<string.h> #define N 1100 struct node { int u,v,next; }bian[N* ...

  4. CODEVS——T 1004 四子连棋

    http://codevs.cn/problem/1004/  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解  查看运行结果     题目描述 Descr ...

  5. tomcat日志采集

    1. 采集tomcat确实比之前的需求复杂很多,我在搭建了一个tomcat的环境,然后产生如下报错先贴出来: Jan 05, 2017 10:53:35 AM org.apache.catalina. ...

  6. HDU 3934

    /*这是用的有旋转卡壳的思想. 首先确定i,j,对k进行循环,知道找到第一个k使得cross(i,j,k)>cross(i,j,k+1),如果k==i进入下一次循环. 对j,k进行旋转,每次循环 ...

  7. HDU 1238

    好吧,这题直接搜索就可以了,不过要按照长度最短的来搜,很容易想得到. 记得ACM比赛上有这道题,呃..不过,直接搜..呵呵了,真不敢想. #include <iostream> #incl ...

  8. Hook的两个小插曲

    看完了前面三篇文章后,这里我们来一个小插曲~~~~ 第一个小插曲.是前面文章一个CM精灵的分析.我们这里使用hook代码来搞定. 第二个小插曲,是如今一些游戏,都有了支付上限,比如每天仅仅能花20块钱 ...

  9. Codeforces Round #377 (Div. 2) D. Exams

    Codeforces Round #377 (Div. 2) D. Exams    题意:给你n个考试科目编号1~n以及他们所需要的复习时间ai;(复习时间不一定要连续的,可以分开,只要复习够ai天 ...

  10. HIT Software Construction Lab6引发出来对锁的问题的探究

    前言 做完lab5开始做lab6了鸭,哈工大计算机学院的学生永不停歇.在做lab6的时候,我在想移动猴子是锁一整个ladder(ADT)还是只锁一个ladder的一个域Monkey数组呢?这两个好像差 ...