[USACO08NOV]奶牛混合起来Mixed Up Cows(状态压缩DP)
题目描述
Each of Farmer John's N (4 <= N <= 16) cows has a unique serial number S_i (1 <= S_i <= 25,000). The cows are so proud of it that each one now wears her number in a gangsta manner engraved
in large letters on a gold plate hung around her ample bovine neck.
Gangsta cows are rebellious and line up to be milked in an order called 'Mixed Up'. A cow order is 'Mixed Up' if the sequence of serial numbers formed by their milking line is such that the serial
numbers of every pair of consecutive cows in line differs by more than K (1 <= K <= 3400). For example, if N = 6 and K = 1 then 1, 3, 5, 2, 6, 4 is a 'Mixed Up' lineup but 1, 3, 6, 5, 2, 4 is not (since
the consecutive numbers 5 and 6 differ by 1).
How many different ways can N cows be Mixed Up?
For your first 10 submissions, you will be provided with the results of running your program on a part of the actual test data.
POINTS: 200
约翰家有N头奶牛,第i头奶牛的编号是Si,每头奶牛的编号都是唯一的。这些奶牛最近 在闹脾气,为表达不满的情绪,她们在挤奶的时候一定要排成混乱的队伍。
在一只混乱的队 伍中,相邻奶牛的编号之差均超过K。比如当K = 1时,1, 3, 5, 2, 6, 4就是一支混乱的队伍, 而1, 3, 6, 5, 2, 4不是,因为6和5只差1。请数一数,有多少种队形是混乱的呢?
输入输出格式
输入格式:
Line 1: Two space-separated integers: N and K
- Lines 2..N+1: Line i+1 contains a single integer that is the serial number of cow i: S_i
输出格式:
- Line 1: A single integer that is the number of ways that N cows can be 'Mixed Up'. The answer is guaranteed to fit in a 64 bit integer.
输入输出样例
4 1
3
4
2
1
2
说明
The 2 possible Mixed Up arrangements are:
3 1 4 2
2 4 1 3
思路:
看到n的范围这么小就能猜到是状态压缩的动态规划。
设f[i][j]为j在二进制表示的那些牛中以第i只牛为尾合法的队形总数,则我们就可以得到动态转移方程f[i][j | (1 << p-1)] += f[i][j] ,其中f[i][j | (1 << p-1)] 为状态j加上(1 << p-1)这只牛后的状态。其中 1 <= p <= n。
该动态转移方程必须符合以下条件:
状态j中没有包括第p只牛,且abs(s[p]-s[i]) > k。
所以,我们枚举每一个状态,并且在每一个状态中枚举第每一只牛,看这只牛是否在该状态中,如果在,我们则在此情况下进一步枚举,看那一只牛不在当前状态里,找到不在当前状态中的牛之后就进行累加,即为:
f[没在当前状态中的牛的输入顺序编号][当前状态加上不在状态中的牛后的新状态] += f[当前状态的结尾牛输入顺序编号][当前状态];
初始化应该为f[i][1 << i] = 1, 因为,当队列中只有一只牛时最后一只牛的标号就是它本身且此情况上的子问题答案是1。
另外,这题因为答案大,所以要使用longlong,这里用到了条件编译,使得在任何平台下,该程序将不受longlon影响。
下面贴代码,有问题留言。
#include<cstdio>
#define N 1 << 17
#define S 20
using namespace std; long long f[S][N];
int s[]; #ifdef WIN32 //条件编译,省去longlong给程序带来的影响
#define LL "%I64d\n"
#else
#define LL "%lld\n"
#endif int main(){
int n,k;
scanf("%d%d",&n,&k);
for(int i = ; i <= n; i++)scanf("%d",&s[i]);
int mxx = ( << n)-;
for(int i = ; i <= n; i++)f[i][ << (i-)] = ;
for(int i = ; i <= mxx+;i++){ //枚举每一个状态
for(int j = ; j <= n; j++){
if(i & ( << j-)){ //第j只牛是否在状态i中
for(int p = ; p <= n; p++) //进一步枚举没有在状态i中的牛
if(!(i & ( << p-)) && (s[j]-s[p] > k || s[p]-s[j] > k)){ //如果k不在队列中且差值大于k
f[p][i | ( << p-)] += f[j][i];
}
}
}
}
long long ans = ;
for(int i = ; i <= n; i++)ans += f[i][mxx];
printf(LL,ans);
return ;
}
[USACO08NOV]奶牛混合起来Mixed Up Cows(状态压缩DP)的更多相关文章
- 洛谷 P2915 [USACO08NOV]奶牛混合起来Mixed Up Cows 解题报告
P2915 [USACO08NOV]奶牛混合起来Mixed Up Cows 题意: 给定一个长\(N\)的序列,求满足任意两个相邻元素之间的绝对值之差不超过\(K\)的这个序列的排列有多少个? 范围: ...
- 洛谷P2915 [USACO08NOV]奶牛混合起来Mixed Up Cows
P2915 [USACO08NOV]奶牛混合起来Mixed Up Cows 题目描述 Each of Farmer John's N (4 <= N <= 16) cows has a u ...
- 洛谷 P2915 [USACO08NOV]奶牛混合起来Mixed Up Cows
P2915 [USACO08NOV]奶牛混合起来Mixed Up Cows 题目描述 Each of Farmer John's N (4 <= N <= 16) cows has a u ...
- [USACO08NOV]奶牛混合起来Mixed Up Cows
题目描述 Each of Farmer John's N (4 <= N <= 16) cows has a unique serial number S_i (1 <= S_i & ...
- luogu P2915 [USACO08NOV]奶牛混合起来Mixed Up Cows
题目描述 Each of Farmer John's N (4 <= N <= 16) cows has a unique serial number S_i (1 <= S_i & ...
- 【题解】Luogu2915 [USACO08NOV]奶牛混合起来Mixed Up Cows
题目描述 Each of Farmer John's N (4 <= N <= 16) cows has a unique serial number S_i (1 <= S_i & ...
- P2915 [USACO08NOV]奶牛混合起来Mixed Up Cows
题目描述 约翰家有N头奶牛,第i头奶牛的编号是Si,每头奶牛的编号都是唯一的.这些奶牛最近 在闹脾气,为表达不满的情绪,她们在挤奶的时候一定要排成混乱的队伍.在一只混乱的队 伍中,相邻奶牛的编号之差均 ...
- 洛谷 P2915 【[USACO08NOV]奶牛混合起来Mixed Up Cows】
类似于n皇后的思想,只要把dfs表示放置情况的数字压缩成一个整数,就能实现记忆化搜索了. 一些有关集合的操作: {i}在集合S内:S&(1<<i)==1: 将{i}加入集合S:S= ...
- 【[USACO08NOV]奶牛混合起来Mixed Up Cows】
首先我们能够一眼看到4 <= N <= 16,那么就是它了,我们要压缩的状态就是它了 那么之后能我们用这个状态表示什么呢,我们要表示的显然是每只奶牛是否在队伍中 比如说10吧,转成二进制后 ...
随机推荐
- Centos6.4建立本地yum源
https://jingyan.baidu.com/article/e9fb46e1aed8207521f7662c.html
- [bzoj2259][Oibh]新型计算机_Dijkstra
新型计算机 bzoj-2259 Oibh 题目大意:给定一个n个数的数列,第i个数为a[i],更改第i个数至x的代价为|x-a[i]|.求最小代价,使得:读入一个数s1后,向后连着读s1个数,然后如s ...
- 修改oracle客户端的字符集
客户端字符集环境select * from nls_instance_parameters,其来源于v$parameter, 表示客户端的字符集的设置,可能是参数文件,环境变量或者是注册表 方法有 : ...
- String 经常用法最优算法实现总结 (一)
<pre name="code" class="java"><span style="font-family: Arial, Hel ...
- HDU 4502
直接贪心就好. #include <iostream> #include <cstdio> #include <algorithm> #include <cs ...
- eclipse导入myeclipse中的web项目
场景:在myeclipse编写的一个简单的电信计费系统项目,后面公用到eclipse,想把它给导入到eclipse中 操作:eclipse中在packag explorer空白处右键>impor ...
- 有什么springMVC+myBatis的书?
最近在看MyBatis,把我最近看的东西给你整理一下吧. 书籍:深入浅出MyBatis技术原理与实战 下载地址:[免费]深入浅出MyBatis技术原理与实战.pdf-CSDN下载 MyBatis 相关 ...
- vim相关资料
http://www.360doc.cn/article/15064667_402846667.html http://blog.jobbole.com/86809/ http://blog.csdn ...
- Spring配置之OpenSessionInViewFilter
转自:https://www.cnblogs.com/blogonfly/articles/3991782.html 参考: OpenSessionInViewFilter作用及配置:http://w ...
- k8s istio 配置请求的路由规则
使用istio我们可以根据权重和HTTP headers来动态配置请求路由. 基于内容的路由 因为BookInfo示例部署了3个版本的评论微服务,我们需要设置一个默认路由. 否则,当你多次访问应用程序 ...