Code:

#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int maxn = 200000 + 4;
int lazy[maxn << 2], sumv[maxn << 2];
inline void pushdown(int o, int l,int r)
{
int ls = (o << 1), rs = (o << 1)|1, mid = (l + r) >> 1;
if(lazy[o])
{
lazy[ls] ^= 1, lazy[rs] ^= 1;
if(ls) sumv[ls] = (mid - l + 1) - sumv[ls];
if(rs) sumv[rs] = (r - mid) - sumv[rs];
lazy[o] = 0;
}
}
inline void pushup(int o){ sumv[o] = sumv[(o << 1)] + sumv[(o << 1)|1]; }
void update(int l,int r,int L,int R,int o)
{
if(r < L || l > R || l > r) return ;
if(l >= L && r <= R)
{
lazy[o] ^= 1, sumv[o] = (r - l + 1) - sumv[o];
return ;
}
int mid = (l + r) >> 1, ls = (o<<1), rs = (o<<1)|1;
pushdown(o, l, r);
update(l,mid, L,R,ls);
update(mid + 1, r, L, R ,rs);
pushup(o);
}
int query(int l,int r, int L,int R,int o)
{
if(l > r || r < L || l > R) return 0;
if(l >= L && r <= R) return sumv[o];
int mid = (l + r) >> 1, ls = (o << 1), rs = (o << 1)|1;
pushdown(o, l, r);
int tmp = 0;
tmp += query(l, mid, L, R, ls);
tmp += query(mid + 1, r, L, R, rs);
return tmp;
}
int main()
{
int n,m;
scanf("%d%d",&n,&m);
for(int i = 1;i <= m; ++i)
{
int ops, a, b;
scanf("%d%d%d",&ops,&a,&b);
if(ops == 0)update(1, n, a, b, 1);
if(ops == 1)printf("%d\n", query(1, n, a, b, 1));
}
return 0;
}

USACO 2008 Nov Gold 3.Light Switching 线段树的更多相关文章

  1. [USACO 2011 Nov Gold] Cow Steeplechase【二分图】

    传送门:http://www.usaco.org/index.php?page=viewproblem2&cpid=93 很容易发现,这是一个二分图的模型.竖直线是X集,水平线是Y集,若某条竖 ...

  2. [USACO 2011 Nov Gold] Above the Median【逆序对】

    传送门:http://www.usaco.org/index.php?page=viewproblem2&cpid=91 这一题我很快的想出了,把>= x的值改为1,< x的改为- ...

  3. 【POJ3612】【USACO 2007 Nov Gold】 1.Telephone Wire 动态调节

    意甲冠军: 一些树高给出.行一种操作:把某棵树增高h,花费为h*h. 操作完毕后连线,两棵树间花费为高度差*定值c. 求两种花费加和最小值. 题解: 跟NOIP2014 D1T3非常像. 暴力动规是O ...

  4. BZOJ 1232 USACO 2008 Nov. 安慰奶牛Cheer

    [题解] 对于每一条边,我们通过它需要花费的代价是边权的两倍加上这条边两个端点的点权. 我们把每条边的边权设为上述的值,然后跑一边最小生成树,再把答案加上最小的点权就好了. #include<c ...

  5. USACO 2008 November Gold Cheering up the Cows /// MST oj24381

    题目大意: 输入n,p:n个点,p条路 接下来n行输入c[]:在各个点需要花费的时间 接下来p行输入u,v,w:u点到v点的路需要花费时间w 求经过所有点且最后回到起点的最少花费时间 https:// ...

  6. 【JZOJ1922】【Usaco 2005 NOV Gold】小行星群

    题目描述 Bessie想驾驶她的飞船穿过危险的小行星群,小行星群是一个N×N的网格(1 <= N <= 500),在网格内有K个小行星(1 <= K <= 10,000). 幸 ...

  7. [POI 2001+2014acm上海邀请赛]Gold Mine/Beam Cannon 线段树+扫描线

    Description  Byteman, one of the most deserving employee of The Goldmine of Byteland, is about to re ...

  8. USACO 2017 FEB Platinum mincross 可持久化线段树

    题意 上下有两个位置分别对应的序列A.B,长度为n,两序列为n的一个排列.当Ai == Bj时,上下会连一条边.你可以选择序列A或者序列B进行旋转任意K步,如 3 4 1 5 2 旋转两步为 5 2 ...

  9. poj 3667 Hotel (线段树)

    http://poj.org/problem?id=3667 Hotel Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 94 ...

随机推荐

  1. lucene_09_solrj的使用

    什么是solrj solrj 是访问Solr 服务的java客户端,提供索引(增删改)和搜索(查)的请求方法,Solrj 通常在嵌入在业务系统中,通过Solrj的API接口操作Solr服务,如下图: ...

  2. LDA 两种含义

    关于LDA有两种含义,一种是线性判别分析(Linear Discriminant Analysis),一种是概率主题模型:隐含狄利克雷分布(Latent Dirichlet Allocation,简称 ...

  3. HDU 4517

    EASY题,直接统计(1,1)到(i,j)的黑点个数,然后计算出以(i,j)点为右下角的矩形内的黑点个数是x*y即可. 注意当x==y时不要重复统计. #include <iostream> ...

  4. HDU 1466

    经典DP,这样的递推确实有点难. 把所有直线分成两组,可以知道 m条直线的交点方案数 =(m-r)条平行线与r条直线交叉的交点数  + r条直线本身的交点方案 亦就是  =(m-r)*r+r条之间本身 ...

  5. int*与(int*)的差别

    晚上被问到一个C++的问题: int **pa=new int* [5]; int *pb=new (int*)[5]; 上面两行代码的差别是什么? 分析与实验结果例如以下: (1)第一行代码能够在V ...

  6. 使用 AFNetworking的时候,怎样管理 session ID

    问: As the title implies, I am using AFNetworking in an iOS project in which the application talks to ...

  7. 屏幕測试亮点,新买了一个显示器,使用web简单的測试下了亮点

    1,购买了一个新的显示器 趁着双11的时候价格廉价.入手了一个显示器. http://serve.netsh.org/pub/dead_pixel.bin 滚动下就能够换颜色了.把chrome最大化, ...

  8. DeepLearning to digit recognizer in kaggle

    DeepLearning to digit recongnizer in kaggle 近期在看deeplearning,于是就找了kaggle上字符识别进行练习.这里我主要用两种工具箱进行求解.并比 ...

  9. wpf Command canExecute 更新

    可以调用以下语句通知 CommandManager.InvalidateRequerySuggested();

  10. Linux安装sshfs挂载远程目录到本地及卸载

    挂载远程目录的方式很多,这里把sshfs记录一下备忘.Linux用sshfs挂载远程目录到本地 安装sshfs 在Ubuntu下,只需要使用 $ sudo apt-get install sshfs ...