[Bzoj4289]PA2012 Tax(Dijkstra+技巧建图)
Description
给出一个N个点M条边的无向图,经过一个点的代价是进入和离开这个点的两条边的边权的较大值,求从起点1到点N的最小代价。起点的代价是离开起点的边的边权,终点的代价是进入终点的边的边权
N<=100000
M<=200000
Solution
这题关键在于化边为点,把无向边拆成2条有向边
考虑最直白的一种建图方法,对于每一个点u,它的每一条入边向所有出边连边
但这样边数太多了,最坏是\(M^2\)条边,不可行
考虑用差值来建图,每条出边向第一条比它大的出边连一条权值为权差值的边,并且反向连一条权值为0的边
然后每条入边向对应的出边连一条为自身权值的边
设一个超级源点S和汇点T,S向1的所以出边连边,n的所以出边向T连边
这样边数是m级别的,然后跑最短路即可,
这题边数较多,我用spfa过不了,用Dijkstra堆优化可以过
Code
#include <cstdio>
#include <algorithm>
#include <queue>
#include <cstring>
#define ll long long
#define Pa pair<ll,int>
using namespace std;
struct info{int to,nex,w;}e[400010],ne[2000010];
int n,m,tot=1,head[400010],nhead[400010],S,T;
ll dis[400010];
priority_queue<Pa,vector<Pa>,greater<Pa> > q;
inline int read(){
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
inline void Link(int u,int v,int w){
e[++tot].to=v;e[tot].w=w;e[tot].nex=head[u];head[u]=tot;
}
inline void nLink(int u,int v,int w){
ne[++tot].to=v;ne[tot].w=w;ne[tot].nex=nhead[u];nhead[u]=tot;
}
bool cmp(int a,int b){return e[a].w<e[b].w;}
int tmp[400010],tp;
void Build(){
tot=1;
S=1,T=m*2+2;
for(int i=1;i<=n;++i){
tp=0;
for(int j=head[i];j;j=e[j].nex) tmp[++tp]=j;
sort(tmp+1,tmp+tp+1,cmp);
for(int j=1;j<=tp;++j){
int u=tmp[j],nex=tmp[j+1];
if(e[u].to==n) nLink(u,T,e[u].w);
if(i==1) nLink(S,u,e[u].w);
nLink(u^1,u,e[u].w);
if(j<tp) nLink(u,nex,e[nex].w-e[u].w),nLink(nex,u,0);
}
}
}
void Dijkstra(){
for(int i=S;i<=T;++i)dis[i]=1ll<<60;
q.push(make_pair(0,S));
dis[S]=0;
while(!q.empty()){
int u=q.top().second;
ll Dis=q.top().first;
q.pop();
if(Dis>dis[u]) continue;
for(int i=nhead[u];i;i=ne[i].nex){
int v=ne[i].to;
if(dis[v]>dis[u]+ne[i].w){
dis[v]=dis[u]+ne[i].w;
q.push(make_pair(dis[v],v));
}
}
}
}
int main(){
n=read(),m=read();
for(int i=1;i<=m;++i){
int u=read(),v=read(),w=read();
Link(u,v,w);
Link(v,u,w);
}
Build();
Dijkstra();
printf("%lld\n",dis[T]);
return 0;
}
[Bzoj4289]PA2012 Tax(Dijkstra+技巧建图)的更多相关文章
- 【BZOJ-4289】Tax 最短路 + 技巧建图
4289: PA2012 Tax Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 168 Solved: 69[Submit][Status][Dis ...
- [BZOJ4289] [PA2012] Tax 解题报告 (最短路+差分建图)
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=4289 4289: PA2012 Tax Time Limit: 10 Sec Memo ...
- 【BZOJ-4289】Tax 最短路 + 技巧建图(化边为点)
题意 给出一个N个点M条边的无向图,经过一个点的代价是进入和离开这个点的两条边的边权的较大值,求从起点1到点N的最小代价.起点的代价是离开起点的边的边权,终点的代价是进入终点的边的边权N<=10 ...
- POJ-1122 FDNY to the Rescue!---Dijkstra+反向建图
题目链接: https://vjudge.net/problem/POJ-1122 题目大意: 给出矩阵,矩阵中每个元素tij表示从第i个交叉路口到第j个交叉路口所需时间,若tij为-1则表示两交叉路 ...
- 2018.10.30 NOIP模拟 有环无向图(dijkstra+巧妙建图)
传送门 建图巧妙啊. 对于每个点的出边,我们将它们排序之后依次连边. 这样可以把O(m2)O(m^2)O(m2)的边数变成O(m)O(m)O(m)的了. 连的权值就是max(edgemax(edgem ...
- HDU5521 Meeting(dijkstra+巧妙建图)
HDU5521 Meeting 题意: 给你n个点,它们组成了m个团,第i个团内有si个点,且每个团内的点互相之间距离为ti,问如果同时从点1和点n出发,最短耗时多少相遇 很明显题目给出的是个无负环的 ...
- bzoj4289 PA2012 Tax——点边转化
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4289 好巧妙的转化!感觉自己难以想出来... 参考了博客:https://blog.csdn ...
- BZOJ4289 : PA2012 Tax
一个直观的想法是把每条边拆成两条有向边,同时每条有向边是新图中的一个点.对于两条边a->b与b->c,两点之间连有向边,费用为两条边费用的最大值.然后新建源点S与汇点T,由S向所有起点为1 ...
- [BZOJ4289][PA2012]TAX(最短路)
首先考虑一种暴力做法,为每条边拆成两条有向边,各建一个点.若某两条边有公共点,则在边所对应的点之间连一条边,权值为两条边中的较大值.这样跑最短路是$O(m^2\log m)$的. 用类似网络流中补流的 ...
随机推荐
- 《Cron表达式详解》
Cron表达式是一个字符串,字符串以5或6个空格隔开,分为6或7个域,每一个域代表一个含义,Cron有如下两种语法格式: Seconds Minutes Hours DayofMonth Month ...
- Android学习笔记4——Activity详解
在 Android 开发过程中,与程序员打交道最多的应该就是作为四大组件之一的 Activity 了.接下来我们就一起来揭开 Activity 的神秘面纱吧~ 一.概述 什么是 Activity(活动 ...
- Struts_OGNL(Object Graph Navigation Language) 对象图导航语言
1.访问值栈中的action的普通属性: 请求: <a href="ognl.action?username=u&password=p">访问属性</a& ...
- python-rrdtool
https://nagios-plugins.org/doc/guidelines.html nagios检测信息 host GPING OK – rtt min/avg/max/mdev = 0.8 ...
- JDBC中重要的类/接口-Connection、DriverManager、ResultSet、Statement及常用方法
DriverManager(管理一组 JDBC 驱动程序的基本服务) 它的方法: getConnection(String url, String user, String password) 试图建 ...
- JAVA StringBuffer的用法
在使用StringBuffer 的时候,习惯性的像String一样把他初始化了 StringBuffer result = null; 结果警告:Null pointer access: The va ...
- window下mycat要放在根目录下
原理文档没有跟我开玩笑呢? 建议放在盘符根目录下 ,无视的我,检查了多遍jdk环境,检查了多遍bat文件内容,仍然没有解决 找不到或无法加载主类 直到我乖乖的把目录放跟盘符才解决,心好累= =! 可能 ...
- CToolTipCtrl使用详细解说
很多的界面设计都需要有Tip提示,下面描述一下Tip的简单使用方法: 1. 首先要New一个CToolTipCtrl的对象m_pContentTip 2. 调用CToolTipCtrl的create函 ...
- Nagios监控ActiveMQ插件开发和部署注意事项
前提,监控服务器是Ubuntu14 操作系统.被监控服务器是RHEL6.5 RHEL7 1.自定义插件可以使用bash.python等脚本来实现. 2.通过nrpe插件来实现监控服务器和被监控主机之间 ...
- php通过gbk编码判断 含有连续数字 可用于判断QQ号,手机号等。
有可能有些输入,不希望让用户的评论或者私信中含有类似于QQ号,手机号的文本,比如交友网站.还有些恶意SEO通过,构造恶意检索词,检索词中包含QQ,手机号等,让百度爬取到,增加展现.也需要将这些检索词屏 ...