Description

给出一个N个点M条边的无向图,经过一个点的代价是进入和离开这个点的两条边的边权的较大值,求从起点1到点N的最小代价。起点的代价是离开起点的边的边权,终点的代价是进入终点的边的边权

N<=100000

M<=200000

Solution

这题关键在于化边为点,把无向边拆成2条有向边

考虑最直白的一种建图方法,对于每一个点u,它的每一条入边向所有出边连边

但这样边数太多了,最坏是\(M^2\)条边,不可行

考虑用差值来建图,每条出边向第一条比它大的出边连一条权值为权差值的边,并且反向连一条权值为0的边

然后每条入边向对应的出边连一条为自身权值的边

设一个超级源点S和汇点T,S向1的所以出边连边,n的所以出边向T连边

这样边数是m级别的,然后跑最短路即可,

这题边数较多,我用spfa过不了,用Dijkstra堆优化可以过

Code

#include <cstdio>
#include <algorithm>
#include <queue>
#include <cstring>
#define ll long long
#define Pa pair<ll,int>
using namespace std; struct info{int to,nex,w;}e[400010],ne[2000010];
int n,m,tot=1,head[400010],nhead[400010],S,T;
ll dis[400010];
priority_queue<Pa,vector<Pa>,greater<Pa> > q; inline int read(){
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
} inline void Link(int u,int v,int w){
e[++tot].to=v;e[tot].w=w;e[tot].nex=head[u];head[u]=tot;
} inline void nLink(int u,int v,int w){
ne[++tot].to=v;ne[tot].w=w;ne[tot].nex=nhead[u];nhead[u]=tot;
} bool cmp(int a,int b){return e[a].w<e[b].w;}
int tmp[400010],tp;
void Build(){
tot=1;
S=1,T=m*2+2;
for(int i=1;i<=n;++i){
tp=0;
for(int j=head[i];j;j=e[j].nex) tmp[++tp]=j;
sort(tmp+1,tmp+tp+1,cmp);
for(int j=1;j<=tp;++j){
int u=tmp[j],nex=tmp[j+1];
if(e[u].to==n) nLink(u,T,e[u].w);
if(i==1) nLink(S,u,e[u].w);
nLink(u^1,u,e[u].w);
if(j<tp) nLink(u,nex,e[nex].w-e[u].w),nLink(nex,u,0);
}
}
} void Dijkstra(){
for(int i=S;i<=T;++i)dis[i]=1ll<<60;
q.push(make_pair(0,S));
dis[S]=0;
while(!q.empty()){
int u=q.top().second;
ll Dis=q.top().first;
q.pop();
if(Dis>dis[u]) continue;
for(int i=nhead[u];i;i=ne[i].nex){
int v=ne[i].to;
if(dis[v]>dis[u]+ne[i].w){
dis[v]=dis[u]+ne[i].w;
q.push(make_pair(dis[v],v));
}
}
}
} int main(){
n=read(),m=read();
for(int i=1;i<=m;++i){
int u=read(),v=read(),w=read();
Link(u,v,w);
Link(v,u,w);
}
Build();
Dijkstra();
printf("%lld\n",dis[T]);
return 0;
}

[Bzoj4289]PA2012 Tax(Dijkstra+技巧建图)的更多相关文章

  1. 【BZOJ-4289】Tax 最短路 + 技巧建图

    4289: PA2012 Tax Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 168  Solved: 69[Submit][Status][Dis ...

  2. [BZOJ4289] [PA2012] Tax 解题报告 (最短路+差分建图)

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=4289 4289: PA2012 Tax Time Limit: 10 Sec  Memo ...

  3. 【BZOJ-4289】Tax 最短路 + 技巧建图(化边为点)

    题意 给出一个N个点M条边的无向图,经过一个点的代价是进入和离开这个点的两条边的边权的较大值,求从起点1到点N的最小代价.起点的代价是离开起点的边的边权,终点的代价是进入终点的边的边权N<=10 ...

  4. POJ-1122 FDNY to the Rescue!---Dijkstra+反向建图

    题目链接: https://vjudge.net/problem/POJ-1122 题目大意: 给出矩阵,矩阵中每个元素tij表示从第i个交叉路口到第j个交叉路口所需时间,若tij为-1则表示两交叉路 ...

  5. 2018.10.30 NOIP模拟 有环无向图(dijkstra+巧妙建图)

    传送门 建图巧妙啊. 对于每个点的出边,我们将它们排序之后依次连边. 这样可以把O(m2)O(m^2)O(m2)的边数变成O(m)O(m)O(m)的了. 连的权值就是max(edgemax(edgem ...

  6. HDU5521 Meeting(dijkstra+巧妙建图)

    HDU5521 Meeting 题意: 给你n个点,它们组成了m个团,第i个团内有si个点,且每个团内的点互相之间距离为ti,问如果同时从点1和点n出发,最短耗时多少相遇 很明显题目给出的是个无负环的 ...

  7. bzoj4289 PA2012 Tax——点边转化

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4289 好巧妙的转化!感觉自己难以想出来... 参考了博客:https://blog.csdn ...

  8. BZOJ4289 : PA2012 Tax

    一个直观的想法是把每条边拆成两条有向边,同时每条有向边是新图中的一个点.对于两条边a->b与b->c,两点之间连有向边,费用为两条边费用的最大值.然后新建源点S与汇点T,由S向所有起点为1 ...

  9. [BZOJ4289][PA2012]TAX(最短路)

    首先考虑一种暴力做法,为每条边拆成两条有向边,各建一个点.若某两条边有公共点,则在边所对应的点之间连一条边,权值为两条边中的较大值.这样跑最短路是$O(m^2\log m)$的. 用类似网络流中补流的 ...

随机推荐

  1. h5:WebSocket

    实时 Web 应用的窘境 Web 应用的信息交互过程通常是客户端通过浏览器发出一个请求,服务器端接收和审核完请求后进行处理并返回结果给客户端,然后客户端浏览器将信息呈现出来,这种机制对于信息变化不是特 ...

  2. switch 和 if...else if 的区别

     为什么很多人用  if...else..if   而不使用   switch 1,if...else...if 只是单纯地一个接一个比较:if...else可能每个条件都计算一遍: 2,switch ...

  3. (13)JavaScript之[HTML DOM元素][JS对象]

    元素 /** * HTML DOM 元素(节点)*/ //创建新的HTML元素 var para = document.createElement('p'); var node = document. ...

  4. (C# 基础) 类访问修饰符

    C# 中有5个权限修饰符,用于控制对对象的访问权限. 1. public:   访问不受限制. namespace, enum成员,interface成员 隐式的具有public 修饰符,不能在显式添 ...

  5. Azure 7 月新公布

    Azure 7月新发布:Cosmos DB,事件中心捕捉功能,Hybrid Connections,流量管理器快速故障转移功能. 您现有的 DocumentDB 资源现已作为 Azure 门户上 Az ...

  6. sudo使用

    /etc/sudo.conf /etc/sudoers /etc/sudoers.d/ /etc/sudo-ldap.conf /etc/sudoer sudo安全策略配置文件 Defaults re ...

  7. java中空字符串、null的区别

    String 的null,或者赋值为"",有什么区别? 废话少说,上代码: public class EmptyAndNull { /** * @param args */ pub ...

  8. IDEA中git的配置与使用

    IDEA中git的配置与使用 1.介绍 git是目前非常流行的版本管理管理软件,因其具有分布式特点,越来越受到企业的欢迎.IDEA作为一款优秀的开发软件,其内部也提供了对git的支持. 2.下载并安装 ...

  9. Ehcache的配置与使用

    Ehcache是JAVA内制的一个缓存框架! 目的:缓解频繁读取数据库的压力; 初步配置如下: <?xml version="1.0" encoding="UTF- ...

  10. org.apache.xmlbeans.XmlException: error: does not close tag

    使用myeclipse的jax自动生成webservice , 或者serviceImpl通过@webservice来实现webservice时, 使用soap UI (我测试使用的版本 5.2.1) ...