HDU 3853 LOOP (概率DP求期望)
Description
Homura wants to help her friend Madoka save the world. But because of the plot of the Boss Incubator, she is trapped in a labyrinth called LOOPS.
The planform of the LOOPS is a rectangle of R*C grids. There is a portal in each grid except the exit grid. It costs Homura 2 magic power to use a portal once. The portal in a grid G(r, c) will send Homura to the grid below G (grid(r+1, c)), the grid on the right of G (grid(r, c+1)), or even G itself at respective probability (How evil the Boss Incubator is)!
At the beginning Homura is in the top left corner of the LOOPS ((1, 1)), and the exit of the labyrinth is in the bottom right corner ((R, C)). Given the probability of transmissions of each portal, your task is help poor Homura calculate the EXPECT magic power she need to escape from the LOOPS.
Input
The following R lines, each contains C*3 real numbers, at 2 decimal places. Every three numbers make a group. The first, second and third number of the cth group of line r represent the probability of transportation to grid (r, c), grid (r, c+1), grid (r+1, c) of the portal in grid (r, c) respectively. Two groups of numbers are separated by 4 spaces.
It is ensured that the sum of three numbers in each group is 1, and the second numbers of the rightmost groups are 0 (as there are no grids on the right of them) while the third numbers of the downmost groups are 0 (as there are no grids below them).
You may ignore the last three numbers of the input data. They are printed just for looking neat.
The answer is ensured no greater than 1000000.
Terminal at EOF
Output
Sample Input
0.00 0.50 0.50 0.50 0.00 0.50
0.50 0.50 0.00 1.00 0.00 0.00
Sample Output
题意:
有一个迷宫r行c列,开始点在[1,1]现在要走到[r,c]
对于在点[x,y]可以打开一扇门走到[x,y]或者[x+1,y]或者[x,y+1]
消耗2点魔力 问平均消耗多少魔力能走到[r,c]
分析:
输入r和c 随后r行c列 输入三个概率
假设dp[i][j]表示在点[i,j]到达[r,c]所需要消耗的平均魔力(期望)
则从dp[i][j]可以到达:
dp[i][j],dp[i+1,j],dp[i][j+1];
对应概率分别为: p1[i][j],p2[i][j],p3 [i][j]
由E(aA+bB+cC...)=aEA+bEB+cEC+...//包含状态A,B,C的期望可以分解子期望求解
得到dp[i][j]=p1[i][j]*dp[i][j]+p2[i][j]*dp[i+1][j]+p3[i][j]*dp[i][j+1]+2;
得出最终公式:dp[i][j]]=(p2[i][j]*dp[i+1][j]+p3[i][j]*dp[i][j+1]+2)/(1-p1[i][j])
注意分母为0的时候要特判一下
dp[i][j]表示从(i,j)走到(n,s)所需要消耗的魔力的期望值。
#include <iostream>
#include <stdio.h>
#include <string.h>
using namespace std;
double f[][];
double p1[][],p2[][],p3[][];
int main()
{
int n,s;
while(scanf("%d%d",&n,&s)!=EOF)
{
for(int i=;i<=n;i++)
for(int j=;j<=s;j++)
scanf("%lf%lf%lf",&p1[i][j],&p2[i][j],&p3[i][j]);
memset(f,,sizeof(f));
for(int i=n;i>=;i--)
{
for(int j=s;j>=;j--)
{
if(i==n&&j==s)
continue;
if(p1[i][j]==1.00) //分母为0
continue;
f[i][j]=p2[i][j]*f[i][j+]+p3[i][j]*f[i+][j]+2.0;
f[i][j]/=(-p1[i][j]);
}
}
printf("%.3f\n",f[][]); //是f[1][1],不是f[0][0]。
}
return ;
}
HDU 3853 LOOP (概率DP求期望)的更多相关文章
- HDU3853-LOOPS(概率DP求期望)
LOOPS Time Limit: 15000/5000 MS (Java/Others) Memory Limit: 125536/65536 K (Java/Others) Total Su ...
- POJ2096 Collecting Bugs(概率DP,求期望)
Collecting Bugs Ivan is fond of collecting. Unlike other people who collect post stamps, coins or ot ...
- LightOJ 1030 【概率DP求期望】
借鉴自:https://www.cnblogs.com/keyboarder-zsq/p/6216762.html 题意:n个格子,每个格子有一个值.从1开始,每次扔6个面的骰子,扔出几点就往前几步, ...
- HDU 5245 Joyful(概率题求期望)
D - Joyful Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Submit S ...
- hdu 3853 LOOPS 概率DP
简单的概率DP入门题 代码如下: #include<iostream> #include<stdio.h> #include<algorithm> #include ...
- HDU 3853 LOOPS 概率DP入门
LOOPS Time Limit: 15000/5000 MS (Java/Others) Memory Limit: 125536/65536 K (Java/Others)Total Sub ...
- hdu 3853 LOOPS (概率dp 逆推求期望)
题目链接 LOOPS Time Limit: 15000/5000 MS (Java/Others) Memory Limit: 125536/65536 K (Java/Others)Tota ...
- HDU 4405 Aeroplane chess (概率DP求期望)
题意:有一个n个点的飞行棋,问从0点掷骰子(1~6)走到n点须要步数的期望 当中有m个跳跃a,b表示走到a点能够直接跳到b点. dp[ i ]表示从i点走到n点的期望,在正常情况下i点能够到走到i+1 ...
- hdu 4405 Aeroplane chess(简单概率dp 求期望)
Aeroplane chess Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)T ...
随机推荐
- php COM
查看php.ini中是否已经开启了com.allow_dcom = true 从php/ext/里面查找一下有没有这个php_com_dotnet.dll这个文件 如果没有网上下载个,一般都会有的吧应 ...
- 1、spring boot入门
1.Spring Boot 简介 简化Spring应用开发的一个框架: 整个Spring技术栈的一个大整合: J2EE开发的一站式解决方案: 2.微服务 2014,martin fowler 微服务: ...
- 笔记-scrapy-signal
笔记-scrapy-signal 1. scrapy singal 1.1. 信号机制 scrapy的信号机制主要由三个模块完成 signals.py 定义信号量 signalmana ...
- C17K:Lying Island
链接 题意: 有n个人,每个人可能会说: 第x个人是好人/坏人 如果第x个人是好人/坏人,则第y个人是好人/坏人 思路: 状压dp,首先每个人所说的人只能是他前面10个人,所以对于第i个人记录下,他前 ...
- Spring MVC重定向和转发
技术交流群:233513714 转发和重定向 开始Java EE时,可能会对转发(forward)和重定向(redirect)这个两个概念不清楚.本文先通过代码实例和运行结果图片感性 认识二者的区别, ...
- 滑动菜单栏之开源项目SlidingMenu的使用
一.SlidingMenu简介 相信大家对SlidingMenu都不陌生了,它是一种比较新的设置界面或配置界面的效果,在主界面左滑或者右滑出现设置界面效果,能方便的进行各种操作.很多优秀的应用都采用了 ...
- 【ZigZag Conversion】cpp
题目: The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows l ...
- apt-get阿里源
备份原有配置文件 mv /etc/apt/sources.list /etc/apt/sources.list.bak 新建一个文件 vi /etc/apt/sources.list 复制以下内容到新 ...
- CentOS6/7-防火墙管理
#CentOS6 #开放端口运行外部访问(不指定源IP) iptables -I INPUT -p tcp --dport -j ACCEPT iptables -I INPUT -p tcp --d ...
- redhat 安装python3
一.首先,官网下载python3的所需版本. wget https://www.python.org/ftp/python/3.6.0/Python-3.6.0.tgz 想下载到那个文件夹下就先进入到 ...