题意:单源最短路,给你一些路,给你这些路的长度,给你修这些路的话费,求最短路和最小花费。

析:本质就是一个最短路,不过要维护两个值罢了,在维护花费时要维护的是该路要花多少,而不是总的路线花费。

代码如下:

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#include <sstream>
#define debug() puts("++++");
#define gcd(a, b) __gcd(a, b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std; typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const LL LNF = 1e16;
const double inf = 0x3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 1e5 + 10;
const int mod = 1e9 + 7;
const int dr[] = {-1, 0, 1, 0};
const int dc[] = {0, 1, 0, -1};
const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline bool is_in(int r, int c){
return r >= 0 && r < n && c >= 0 && c < m;
}
struct Node{
int v, c, d;
}; vector<Node> G[maxn];
struct node{
int u; LL d, c;
node(){ }
node(int uu, LL dd, LL cc) : u(uu), d(dd), c(cc) { }
bool operator < (const node &p) const{
return d > p.d || (d == p.d && c > p.c);
}
}; LL d[maxn], c[maxn]; void solve(){
priority_queue<node> pq;
pq.push(node(0, 0, 0));
d[0] = c[0] = 0; while(!pq.empty()){
node U = pq.top(); pq.pop();
int u = U.u;
for(int i = 0; i < G[u].size(); ++i){
Node &V = G[u][i];
int v = V.v;
if(d[v] > d[u] + V.d){
d[v] = d[u] + V.d;
c[v] = V.c;
pq.push(node(v, d[v], c[v]));
}
else if(d[v] == d[u] + V.d && c[v] > V.c){
c[v] = V.c;
pq.push(node(v, d[v], c[v]));
}
}
}
LL ans1 = 0, ans2 = 0;
for(int i = 1; i < n; ++i){
ans1 += d[i];
ans2 += c[i];
} printf("%lld %lld\n", ans1, ans2);
} int main(){
int T; cin >> T;
while(T--){
scanf("%d %d", &n, &m);
for(int i = 0; i < n; ++i){
G[i].clear();
c[i] = d[i] = LNF;
}
for(int i = 0; i < m; ++i){
int x;
Node u;
scanf("%d %d %d %d", &x, &u.v, &u.d, &u.c);
G[x].push_back(u);
swap(x, u.v);
G[x].push_back(u);
}
solve();
}
return 0;
}

  

ZOJ 3946 Highway Project (最短路)的更多相关文章

  1. zoj 3946 Highway Project(最短路 + 优先队列)

    Highway Project Time Limit: 2 Seconds      Memory Limit: 65536 KB Edward, the emperor of the Marjar ...

  2. ZOJ 3946.Highway Project(The 13th Zhejiang Provincial Collegiate Programming Contest.K) SPFA

    ZOJ Problem Set - 3946 Highway Project Time Limit: 2 Seconds      Memory Limit: 65536 KB Edward, the ...

  3. ZOJ 3946 Highway Project(Dijkstra)

    Highway Project Time Limit: 2 Seconds      Memory Limit: 65536 KB Edward, the emperor of the Marjar ...

  4. ZOJ 3946 Highway Project 贪心+最短路

    题目链接: http://www.icpc.moe/onlinejudge/showProblem.do?problemCode=3946 题解: 用dijkstra跑单元最短路径,如果对于顶点v,存 ...

  5. ZOJ 3946 Highway Project

    1.迪杰斯特拉最小堆 #include<cstdio> #include<cstring> #include<cmath> #include<map> ...

  6. (spfa) Highway Project (zoj 3946 )

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=5718   Highway Project Time Limit: 2 Seco ...

  7. ZOJ3946:Highway Project(最短路变形)

    本文转载自:http://www.javaxxz.com/thread-359442-1-1.html Edward, the emperor of the Marjar Empire, wants ...

  8. ZOJ - 3946-Highway Project(最短路变形+优先队列优化)

    Edward, the emperor of the Marjar Empire, wants to build some bidirectional highways so that he can ...

  9. ZOJ-3946 Highway Project (最短路)

    题目大意:一张带权无向图,权有两个参数(d,c),分别表示走过这条边的时间和建造这条边的代价.要求选出一些边,使得0节点到其他点的距离之和最短,并在最短的基础上求最小代价. 题目分析:这是16年浙江省 ...

随机推荐

  1. LINQ 学习路程 -- 查询操作 Deferred Execution of LINQ Query 延迟执行

    延迟执行是指一个表达式的值延迟获取,知道它的值真正用到. 当你用foreach循环时,表达式才真正的执行. 延迟执行有个最重要的好处:它总是给你最新的数据 实现延迟运行 你可以使用yield关键字实现 ...

  2. 大话设计模式--备忘录 Memento -- C++实现实例

    1. 备忘录: 在不破坏封装性的前提下, 捕获一个对象的内部状态,并在该对象之外保存这个状态,这样以后可将该对象恢复到原先保存的状态. Originator 发起人: 负责创建一个备忘录Memento ...

  3. 分享知识-快乐自己:揭秘HBase

    揭秘HBase: 一):大数据(hadoop)初始化环境搭建 二):大数据(hadoop)环境搭建 三):运行wordcount案例 四):揭秘HDFS 五):揭秘MapReduce 六):揭秘HBa ...

  4. Vue2.0 Transition常见用法全解惑

    Vue2.0的过渡系统(transition)有了很大的改变,想把1.0的项目迁移到2.0,着实需要费一些功夫,今天我就要把vue2.0的过渡系统的用法搞清楚,因为之前确实踩了不少坑.这里只涉及单元素 ...

  5. 【leetcode刷题笔记】Search in Rotated Sorted Array

    Suppose a sorted array is rotated at some pivot unknown to you beforehand. (i.e., 0 1 2 4 5 6 7 migh ...

  6. 小米5安装Xposed框架——需要解锁刷机

    Xposed官网 https://forum.xda-developers.com/xposed 官方模块厂库 https://repo.xposed.info/ 中文站点 https://xpose ...

  7. python日志轮转RotatingFileHandler在django中的一个bug

    简介 大量过时的日志会占用硬盘空间,甚至长时间运行不注意会占满硬盘导致宕机,那么就可以使用内建logging模块根据文件大小(logging.handlers.RotatingFileHandler) ...

  8. 反编译工具Reflector下载(集成FileGenerator和FileDisassembler)

    Reflector是一款比较强大的反编译工具,相信很多朋友都用过它,但reflector本身有很多局限性, 比如只能一个一个的查看方法等,但幸好reflector支持插件功能目前网上有很多reflec ...

  9. CF475D:CGCDSSQ

    浅谈\(RMQ\):https://www.cnblogs.com/AKMer/p/10128219.html 题目传送门:https://codeforces.com/problemset/prob ...

  10. POJ1703(2集合并查集)

    Find them, Catch them Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 39402   Accepted: ...