Currency Exchange

Time Limit:1000MS     Memory Limit:30000KB     64bit IO Format:%I64d & %I64u

Description

Several currency exchange points are working in our city. Let us suppose that each point specializes in two particular currencies and performs exchange operations only with these currencies. There can be several points specializing in the same pair of currencies. Each point has its own exchange rates, exchange rate of A to B is the quantity of B you get for 1A. Also each exchange point has some commission, the sum you have to pay for your exchange operation. Commission is always collected in source currency. 
For example, if you want to exchange 100 US Dollars into Russian Rubles at the exchange point, where the exchange rate is 29.75, and the commission is 0.39 you will get (100 - 0.39) * 29.75 = 2963.3975RUR. 
You surely know that there are N different currencies you can deal with in our city. Let us assign unique integer number from 1 to N to each currency. Then each exchange point can be described with 6 numbers: integer A and B - numbers of currencies it exchanges, and real R AB, CAB, R BA and C BA - exchange rates and commissions when exchanging A to B and B to A respectively. 
Nick has some money in currency S and wonders if he can somehow, after some exchange operations, increase his capital. Of course, he wants to have his money in currency S in the end. Help him to answer this difficult question. Nick must always have non-negative sum of money while making his operations. 

Input

The first line of the input contains four numbers: N - the number of currencies, M - the number of exchange points, S - the number of currency Nick has and V - the quantity of currency units he has. The following M lines contain 6 numbers each - the description of the corresponding exchange point - in specified above order. Numbers are separated by one or more spaces. 1<=S<=N<=100, 1<=M<=100, V is real number, 0<=V<=10 3
For each point exchange rates and commissions are real, given with at most two digits after the decimal point, 10 -2<=rate<=10 2, 0<=commission<=10 2
Let us call some sequence of the exchange operations simple if no exchange point is used more than once in this sequence. You may assume that ratio of the numeric values of the sums at the end and at the beginning of any simple sequence of the exchange operations will be less than 10 4

Output

If Nick can increase his wealth, output YES, in other case output NO to the output file.

Sample Input

3 2 1 20.0
1 2 1.00 1.00 1.00 1.00
2 3 1.10 1.00 1.10 1.00

Sample Output

YES

题目大意:给你n种货币,m种货币交换关系,交换率和手续费,给你起始的货币类型和金额,问你是否可以通过交换货币,最后回到起始的货币时能盈利。

解题思路:如果要盈利,只需要判断图中存不存在正环, 即可以一直让某种货币额度无限增加。由于是无向图,那么只要存在正环,那么我就可以最后转化成起始的货币且盈利。所以只要将SPFA判负环的条件变化一下就行。初始值时,让除原点之外的d数组都赋值为0。同时松弛条件变为d[e.to] < (d[e.from] - e.com)*e.rate。即可,最后判断当u为起点时的d[u]是否大于起始金额即可。

#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<queue>
#include<vector>
#include<iostream>
using namespace std;
const int INF = 0x3f3f3f3f;
const int maxn = 1e3+200;
int n , m;
struct Edge{
int from,to;
double rate , com;
};
vector<Edge>edges;
vector<int>G[maxn];
void init(){
for(int i = 0; i <= n; i++){
G[i].clear();
}
edges.clear();
}
double d[maxn] ,cnt[maxn], inq[maxn];
void AddEdge(int u,int v,double r,double co){
edges.push_back( (Edge){u,v,r,co} );
m = edges.size();
G[u].push_back(m-1);
} bool SPFA(int s, double V){
queue<int>Q;
for(int i = 0; i <= n; i++){
d[i] = 0;
}
d[s] = V;
cnt[s] ++;
inq[s] = 1;
Q.push(s);
while(!Q.empty()){
int u = Q.front();
Q.pop();
if(u == s&& d[s] > V){
return true;
}
inq[u] = 0;
for(int i = 0; i < G[u].size(); i++){
Edge & e = edges[G[u][i]];
if(d[e.to] < (d[e.from] - e.com)*e.rate ){
d[e.to ] = (d[e.from] - e.com) *e.rate;
if(!inq[e.to]){
inq[e.to] = 1;
Q.push(e.to);
}
}
}
}
return false;
}
int main(){
int mm,s;
double k;
while(scanf("%d%d%d%lf",&n,&mm,&s,&k)!=EOF){
int a,b;
double c,d;
for(int i = 0; i < mm; i++){
scanf("%d%d%lf%lf",&a,&b,&c,&d);
AddEdge(a,b,c,d);
scanf("%lf%lf",&c,&d);
AddEdge(b,a,c,d);
}
bool yes = SPFA(s,k);
if(yes){
puts("YES");
}else{
puts("NO");
}
}
return 0;
}

  


POJ 1860——Currency Exchange——————【最短路、SPFA判正环】的更多相关文章

  1. POJ 1860 Currency Exchange 最短路+负环

    原题链接:http://poj.org/problem?id=1860 Currency Exchange Time Limit: 1000MS   Memory Limit: 30000K Tota ...

  2. POJ 1860 Currency Exchange (最短路)

    Currency Exchange Time Limit:1000MS     Memory Limit:30000KB     64bit IO Format:%I64d & %I64u S ...

  3. Currency Exchange 货币兑换 Bellman-Ford SPFA 判正权回路

    Description Several currency exchange points are working in our city. Let us suppose that each point ...

  4. poj 1860 Currency Exchange (最短路bellman_ford思想找正权环 最长路)

    感觉最短路好神奇呀,刚开始我都 没想到用最短路 题目:http://poj.org/problem?id=1860 题意:有多种从a到b的汇率,在你汇钱的过程中还需要支付手续费,那么你所得的钱是 mo ...

  5. POJ 1860 Currency Exchange 最短路 难度:0

    http://poj.org/problem?id=1860 #include <cstdio> //#include <queue> //#include <deque ...

  6. 最短路(Bellman_Ford) POJ 1860 Currency Exchange

    题目传送门 /* 最短路(Bellman_Ford):求负环的思路,但是反过来用,即找正环 详细解释:http://blog.csdn.net/lyy289065406/article/details ...

  7. POJ 1860 Currency Exchange / ZOJ 1544 Currency Exchange (最短路径相关,spfa求环)

    POJ 1860 Currency Exchange / ZOJ 1544 Currency Exchange (最短路径相关,spfa求环) Description Several currency ...

  8. POJ 1860 Currency Exchange + 2240 Arbitrage + 3259 Wormholes 解题报告

    三道题都是考察最短路算法的判环.其中1860和2240判断正环,3259判断负环. 难度都不大,可以使用Bellman-ford算法,或者SPFA算法.也有用弗洛伊德算法的,笔者还不会SF-_-…… ...

  9. POJ 3621 Sightseeing Cows 【01分数规划+spfa判正环】

    题目链接:http://poj.org/problem?id=3621 Sightseeing Cows Time Limit: 1000MS   Memory Limit: 65536K Total ...

随机推荐

  1. Java NIO看这一篇就够了

    原文链接:https://mp.weixin.qq.com/s/c9tkrokcDQR375kiwCeV9w? 现在使用NIO的场景越来越多,很多网上的技术框架或多或少的使用NIO技术,譬如Tomca ...

  2. AP_MergeSql

    ) FROM DELTA.PRMCN WHERE ETL_FLAG IN ('A','D')) S; --重跑:删除已跑入数据 DELETE FROM CCRD.PRMCN WHERE JOB_SEQ ...

  3. P4724 【模板】三维凸包

    \(\color{#0066ff}{题目描述}\) 给出空间中n个点,求凸包表面积. \(\color{#0066ff}{输入格式}\) 第一行一个整数n,表示点数. 接下来n行,每行三个实数x,y, ...

  4. Exadata LVM snapshot备份失败

    一台X4-2 的计算节点进行image升级,在正式升级之前利用LVM snapshot备份操作系统时备份失败,并且报大量IO错误,提示无法找到LVM snapshot的挂载点.检查文件系统状态: [r ...

  5. 老男孩python作业8-学员管理系统

    学员管理系统开发: 需求: 用户角色,讲师\学员, 用户登陆后根据角色不同,能做的事情不同,分别如下 讲师视图 管理班级,可创建班级,根据学员qq号把学员加入班级 可创建指定班级的上课纪录,注意一节上 ...

  6. PHP常用设计模式汇总

    装饰模式: <?php abstract class Tile { abstract function getWealthFactor(); } class Plains extends Til ...

  7. PHP漏洞全解—————9、文件上传漏洞

    本文主要介绍针对PHP网站文件上传漏洞.由于文件上传功能实现代码没有严格限制用户上传的文件后缀以及文件类型,导致允许攻击者向某个可通过 Web 访问的目录上传任意PHP文件,并能够将这些文件传递给 P ...

  8. dynamic:动态类型简单用法,写法

    class 动态创建数据 { //动态类型:本质感觉跟object的用法差不多,只是在执行的时候才知道数据类型 public dynamic Dynamic() { //定义一个动态类型,作为返回值 ...

  9. NPOI2.0导出excel之添加样式、边框和表头

    //优化后导出excel public System.IO.Stream ExcelStream(string search) // { var orderBusiniss = Containers. ...

  10. from表单,图片预览,和表单提交

    <form> <input id="file" class="topsub-file" type="file" name= ...