[LOJ6281]数列分块入门 5
题目大意:
给你一个长度为$n(n\leq50000)$的序列$A(0\leq A_i<2^{31})$,支持进行以下两种操作:
1.将区间$[l,r]$中所有数开方;
2.询问区间$[l,r]$的和。
思路:
分块。
因为当一个区间内的所有$A_i$都$\leq1$时,操作1对答案没有影响,因此我们可以记录每个区间是否还有操作的必要。如果还有大于$1$的数,就暴力进行操作,否则跳过。易证每个区间最多开方4次。
#include<cmath>
#include<cstdio>
#include<cctype>
#include<algorithm>
typedef long long int64;
inline int getint() {
register char ch;
register bool neg=false;
while(!isdigit(ch=getchar())) if(ch=='-') neg=true;
register int x=ch^'';
while(isdigit(ch=getchar())) x=(((x<<)+x)<<)+(ch^'');
return neg?-x:x;
}
const int N=;
int val[N],bel[N],begin[N],end[N],max[N];
int64 sum[N];
inline void modify(const int &l,const int &r,const int &c) {
if(bel[l]==bel[r]) {
for(register int i=l;i<=r;i++) val[i]=sqrt(val[i]);
sum[bel[l]]=max[bel[l]]=;
for(register int i=begin[bel[l]];i<=end[bel[l]];i++) {
sum[bel[l]]+=val[i];
max[bel[l]]=std::max(max[bel[l]],val[i]);
}
return;
}
for(register int i=l;bel[i]==bel[l];i++) val[i]=sqrt(val[i]);
for(register int i=r;bel[i]==bel[r];i--) val[i]=sqrt(val[i]);
for(register int i=bel[l]+;i<bel[r];i++) {
if(max[i]==) continue;
for(register int j=begin[i];j<=end[i];j++) val[j]=sqrt(val[j]);
}
for(register int i=bel[l];i<=bel[r];i++) {
if(max[i]==) continue;
sum[i]=max[i]=;
for(register int j=begin[i];j<=end[i];j++) {
sum[i]+=val[j];
max[i]=std::max(max[i],val[j]);
}
}
}
inline int64 query(const int &l,const int &r) {
int64 ret=;
if(bel[l]==bel[r]) {
for(register int i=l;i<=r;i++) ret+=val[i];
return ret;
}
for(register int i=l;bel[i]==bel[l];i++) ret+=val[i];
for(register int i=r;bel[i]==bel[r];i--) ret+=val[i];
for(register int i=bel[l]+;i<bel[r];i++) ret+=sum[i];
return ret;
}
int main() {
const int n=getint(),block=sqrt(n);
for(register int i=;i<=n;i++) {
val[i]=getint();
bel[i]=i/block;
if(!begin[bel[i]]) begin[bel[i]]=i;
end[bel[i]]=i;
sum[bel[i]]+=val[i];
max[bel[i]]=std::max(max[bel[i]],val[i]);
}
for(register int i=;i<n;i++) {
const int opt=getint(),l=getint(),r=getint(),c=getint();
if(opt) {
printf("%lld\n",query(l,r));
} else {
modify(l,r,c);
}
}
return ;
}
[LOJ6281]数列分块入门 5的更多相关文章
- 题解——loj6281 数列分块入门5 (分块)
分块 若块内最大值为0或1,则不用再开方 然后暴力修改 可以证明,如果开方后向下取整,则最多开方4次一个数就会变成0或1 #include <cstdio> #include <cm ...
- LOJ6277~6285 数列分块入门
Portals 分块需注意的问题 数组大小应为,因为最后一个块可能会超出的范围. 当操作的区间在一个块内时,要特判成暴力修改. 要清楚什么时候应该+tag[t] 数列分块入门 1 给出一个长为的数列, ...
- 数列分块入门九题(三):LOJ6283~6285
Preface 最后一题我一直觉得用莫队是最好的. 数列分块入门 7--区间乘法,区间加法,单点询问 还是很简单的吧,比起数列分块入门 7就多了个区间乘. 类似于线段树,由于乘法的优先级高于加法,因此 ...
- 数列分块入门九题(二):LOJ6280~6282
Preface 个人感觉这中间的三题是最水的没有之一 数列分块入门 4--区间加法,区间求和 这个也是很多数据结构完爆的题目线段树入门题,但是练分块我们就要写吗 修改还是与之前类似,只不过我们要维护每 ...
- 数列分块入门九题(一):LOJ6277~6279
Preface 分块,一个神奇的暴力算法.可以把很多\(O(n^2)\)的数据结构题的暴力优化到常数极小的\(O(n\sqrt n)\).当一些毒瘤题无法用线段树,主席树,平衡树,树状数组...... ...
- LOJ6285 数列分块入门9(分块)
昨天对着代码看了一晚上 然后今天终于在loj上过了 数列分块入门9题撒花★,°:.☆( ̄▽ ̄)/$:.°★ . 然后相当玄学 块的大小调成\(\sqrt{n}\)会TLE,改成150就过了 啧 然后就 ...
- LOJ 6277:数列分块入门 1(分块入门)
#6277. 数列分块入门 1 内存限制:256 MiB时间限制:100 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计讨论 3 测试数据 题目描述 给出一 ...
- LOJ #6285. 数列分块入门 9-分块(查询区间的最小众数)
#6285. 数列分块入门 9 内存限制:256 MiB时间限制:1500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论 2 题目描述 给 ...
- LOJ #6284. 数列分块入门 8-分块(区间查询等于一个数c的元素,并将这个区间的所有元素改为c)
#6284. 数列分块入门 8 内存限制:256 MiB时间限制:500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论 2 题目描述 给出 ...
随机推荐
- NGUI-使用UILabel呈现图片和不同格式的文字
1.可以使用BBCode标记 [b]Bold[/b] 粗体[i]italic[/i] 斜体[u]underli ...
- 孤荷凌寒自学python第五十五天初识MongoDb数据库
孤荷凌寒自学python第五十五天第一天初识MongoDb数据库 (完整学习过程屏幕记录视频地址在文末) 大家好,2019年新年快乐! 本来我想的是借新年第一天开始,正式尝试学习爬虫,结果今天偶然发现 ...
- springboot13 Hikari 和Introspector
SpringBoot Initializr Introspector(内省) class TestReflect { @Test fun testReflect() { //获取字节码对象 val c ...
- 关于 vee-validate直接引用的方法
转载于:https://blog.csdn.net/hy111/article/details/79046500?%3E 由于当前项目使用的是基于jQuery的前端结构,尝试在新增需求中使用VUE2, ...
- android系统联系人分组特效实现(2)---字母表快速滚动
要实现这种功能,只需要在 android系统联系人分组特效实现(1)---分组导航和挤压动画 的基础上再加上一个自定义控件即可完成. 1.新建项目,继续新建一个java类,BladeView,用 ...
- 史林枫:开源HtmlAgilityPack公共小类库封装 - 网页采集(爬虫)辅助解析利器【附源码+可视化工具推荐】
做开发的,可能都做过信息采集相关的程序,史林枫也经常做一些数据采集或某些网站的业务办理自动化操作软件. 获取目标网页的信息很简单,使用网络编程,利用HttpWebResponse.HttpWebReq ...
- winform 使用Anchor属性进行界面布局
每个控件的定位方法: 一.使用Anchor: Anchor分为Left.Top.Right.Bottom四个属性. 它们的含义如下: Top——表示控件中与父窗体(或父控件)相关的顶部应该保持固定. ...
- ASP.NET——真假分页
所谓分页,就是把所有要显示的内容分成n多页来显示.那为什么要用分页而不直接全部显示呢?这就好比一本书,我们可以用一张纸写完全部书的内容,但实际上并不是这么做的.我们把网页分成一页一页的,其实很大程度上 ...
- 【ZBH选讲·拍照】
[问题描述] 假设这是一个二次元.LYK召集了n个小伙伴一起来拍照.他们分别有自己的身高Hi和宽度Wi.为了放下这个照片并且每个小伙伴都完整的露出来,必须需要一个宽度为ΣWi,长度为max{Hi}的相 ...
- 设置RobotFramework的ftplibrary中,将Upload_file操作的异常改为回显错误信息。
测试中需要通过FTP通道,将数据发送给服务器,而这个上传的数据要被阻断.在结合RobotFramework测试中,安装的ftplibrary,使用upload_file操作,如果上传动作失败,会抛出异 ...