题目大意:
  给你一个长度为$n(n\leq50000)$的序列$A(0\leq A_i<2^{31})$,支持进行以下两种操作:
    1.将区间$[l,r]$中所有数开方;
    2.询问区间$[l,r]$的和。
思路:
  分块。
  因为当一个区间内的所有$A_i$都$\leq1$时,操作1对答案没有影响,因此我们可以记录每个区间是否还有操作的必要。如果还有大于$1$的数,就暴力进行操作,否则跳过。易证每个区间最多开方4次。

 #include<cmath>
#include<cstdio>
#include<cctype>
#include<algorithm>
typedef long long int64;
inline int getint() {
register char ch;
register bool neg=false;
while(!isdigit(ch=getchar())) if(ch=='-') neg=true;
register int x=ch^'';
while(isdigit(ch=getchar())) x=(((x<<)+x)<<)+(ch^'');
return neg?-x:x;
}
const int N=;
int val[N],bel[N],begin[N],end[N],max[N];
int64 sum[N];
inline void modify(const int &l,const int &r,const int &c) {
if(bel[l]==bel[r]) {
for(register int i=l;i<=r;i++) val[i]=sqrt(val[i]);
sum[bel[l]]=max[bel[l]]=;
for(register int i=begin[bel[l]];i<=end[bel[l]];i++) {
sum[bel[l]]+=val[i];
max[bel[l]]=std::max(max[bel[l]],val[i]);
}
return;
}
for(register int i=l;bel[i]==bel[l];i++) val[i]=sqrt(val[i]);
for(register int i=r;bel[i]==bel[r];i--) val[i]=sqrt(val[i]);
for(register int i=bel[l]+;i<bel[r];i++) {
if(max[i]==) continue;
for(register int j=begin[i];j<=end[i];j++) val[j]=sqrt(val[j]);
}
for(register int i=bel[l];i<=bel[r];i++) {
if(max[i]==) continue;
sum[i]=max[i]=;
for(register int j=begin[i];j<=end[i];j++) {
sum[i]+=val[j];
max[i]=std::max(max[i],val[j]);
}
}
}
inline int64 query(const int &l,const int &r) {
int64 ret=;
if(bel[l]==bel[r]) {
for(register int i=l;i<=r;i++) ret+=val[i];
return ret;
}
for(register int i=l;bel[i]==bel[l];i++) ret+=val[i];
for(register int i=r;bel[i]==bel[r];i--) ret+=val[i];
for(register int i=bel[l]+;i<bel[r];i++) ret+=sum[i];
return ret;
}
int main() {
const int n=getint(),block=sqrt(n);
for(register int i=;i<=n;i++) {
val[i]=getint();
bel[i]=i/block;
if(!begin[bel[i]]) begin[bel[i]]=i;
end[bel[i]]=i;
sum[bel[i]]+=val[i];
max[bel[i]]=std::max(max[bel[i]],val[i]);
}
for(register int i=;i<n;i++) {
const int opt=getint(),l=getint(),r=getint(),c=getint();
if(opt) {
printf("%lld\n",query(l,r));
} else {
modify(l,r,c);
}
}
return ;
}

[LOJ6281]数列分块入门 5的更多相关文章

  1. 题解——loj6281 数列分块入门5 (分块)

    分块 若块内最大值为0或1,则不用再开方 然后暴力修改 可以证明,如果开方后向下取整,则最多开方4次一个数就会变成0或1 #include <cstdio> #include <cm ...

  2. LOJ6277~6285 数列分块入门

    Portals 分块需注意的问题 数组大小应为,因为最后一个块可能会超出的范围. 当操作的区间在一个块内时,要特判成暴力修改. 要清楚什么时候应该+tag[t] 数列分块入门 1 给出一个长为的数列, ...

  3. 数列分块入门九题(三):LOJ6283~6285

    Preface 最后一题我一直觉得用莫队是最好的. 数列分块入门 7--区间乘法,区间加法,单点询问 还是很简单的吧,比起数列分块入门 7就多了个区间乘. 类似于线段树,由于乘法的优先级高于加法,因此 ...

  4. 数列分块入门九题(二):LOJ6280~6282

    Preface 个人感觉这中间的三题是最水的没有之一 数列分块入门 4--区间加法,区间求和 这个也是很多数据结构完爆的题目线段树入门题,但是练分块我们就要写吗 修改还是与之前类似,只不过我们要维护每 ...

  5. 数列分块入门九题(一):LOJ6277~6279

    Preface 分块,一个神奇的暴力算法.可以把很多\(O(n^2)\)的数据结构题的暴力优化到常数极小的\(O(n\sqrt n)\).当一些毒瘤题无法用线段树,主席树,平衡树,树状数组...... ...

  6. LOJ6285 数列分块入门9(分块)

    昨天对着代码看了一晚上 然后今天终于在loj上过了 数列分块入门9题撒花★,°:.☆( ̄▽ ̄)/$:.°★ . 然后相当玄学 块的大小调成\(\sqrt{n}\)会TLE,改成150就过了 啧 然后就 ...

  7. LOJ 6277:数列分块入门 1(分块入门)

    #6277. 数列分块入门 1 内存限制:256 MiB时间限制:100 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计讨论 3 测试数据 题目描述 给出一 ...

  8. LOJ #6285. 数列分块入门 9-分块(查询区间的最小众数)

    #6285. 数列分块入门 9 内存限制:256 MiB时间限制:1500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论 2   题目描述 给 ...

  9. LOJ #6284. 数列分块入门 8-分块(区间查询等于一个数c的元素,并将这个区间的所有元素改为c)

    #6284. 数列分块入门 8 内存限制:256 MiB时间限制:500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论 2   题目描述 给出 ...

随机推荐

  1. 孤荷凌寒自学python第十六天python的迭代对象

    孤荷凌寒自学python第十六天python的迭代对象 (完整学习过程屏幕记录视频地址在文末,手写笔记在文末) 迭代也就是循环. python中的迭代对象有相关的如下几个术语: A容器 contrai ...

  2. Code Blocks中配置OpenGL方法

    关于在Code Blocks中配置OpenGL的方法,在网上一直没有找到实用的方法,后来在马龙师兄的帮助下终于配置成功了,现把配置过程记录如下. (1)下载codeblocks,最好是带mingw的版 ...

  3. JavaWeb笔记(十)非关系型数据库Redis

    Redis Redis是一款高性能的NOSQL系列的非关系型数据库 主流的NOSQL产品 键值(Key-Value)存储数据库 相关产品: Tokyo Cabinet/Tyrant.Redis.Vol ...

  4. Dijkstra算法_最短路径_L2-001. 紧急救援

    作为一个城市的应急救援队伍的负责人,你有一张特殊的全国地图.在地图上显示有多个分散的城市和一些连接城市的快速道路.每个城市的救援队数量和每一条连接两个城市的快速道路长度都标在地图上.当其他城市有紧急求 ...

  5. Java 中xml解析

    1.String 字符串保持到txt文件 String xml ="abcdefghijk"; FileWriter fw = null; File f = new File(&q ...

  6. Java内存模型与线程_学习笔记

    深入理解java虚拟机: 1.java内存模型 java虚拟机规范中试图定义一种Java内存模型.Java Memory Model(JMM) 1.1 主内存与工作内存 java内存模型规定所有的变量 ...

  7. EXTJS4.0 grid 可编辑模式 配置

    首先配置这个参数 plugins:[//插件 Ext.create("Ext.grid.plugin.CellEditing",{ clicksToEdit:1//单元格 点一下就 ...

  8. [洛谷P3857][TJOI2008]彩灯

    题目大意:有$n$盏灯,$m$个开关($n,m\leqslant 50$),每个开关可以控制的灯用一串$OX$串表示,$O$表示可以控制(即按一下,灯的状态改变),$X$表示不可以控制,问有多少种灯的 ...

  9. A Dangerous Maze (II) LightOJ - 1395(概率dp)

    A Dangerous Maze (II) LightOJ - 1395(概率dp) 这题是Light Oj 1027的加强版,1027那道是无记忆的. 题意: 有n扇门,每次你可以选择其中一扇.xi ...

  10. Educational Codeforces Round 42 (Rated for Div. 2) C

    C. Make a Square time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...