题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3157

https://www.lydsy.com/JudgeOnline/problem.php?id=3516

这篇博客写得太好:http://blog.miskcoo.com/2014/06/bzoj-3157

然而目前之会 \( O(m) \) 的做法;

感觉关键是设计 \( S_{i} \),把它设在 \( m \) 那一维上很妙,毕竟 \( i^{m} \) 不太好做;

然而推式子都是针对 \( m != 1 \) 的,仔细一看 \( m = 1 \) 时就是 \( \sum\limits_{i=1}^{n} i \),注意特判。

代码如下:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
int const xn=,mod=1e9+;
int n,m,s[xn],c[xn][xn];
ll pw(ll a,int b)
{
ll ret=; a=a%mod;
for(;b;b>>=,a=(a*a)%mod)if(b&)ret=(ret*a)%mod;
return ret;
}
int upt(int x){while(x>=mod)x-=mod; while(x<)x+=mod; return x;}
void init()
{
for(int i=;i<=m;i++)c[i][]=;
for(int i=;i<=m;i++)
for(int j=;j<=m;j++)
c[i][j]=upt(c[i-][j]+c[i-][j-]);
}
int main()
{
scanf("%d%d",&n,&m); init();
if(m==){printf("%lld\n",(ll)n*(n+)%mod*pw(,mod-)%mod); return ;}
else s[]=upt((ll)m*(-pw(m,n))%mod*pw(-m,mod-)%mod);
for(int k=;k<=m;k++)
{
s[k]=(ll)pw(n,k)*pw(m,n+)%mod;
for(int j=;j<k;j++)
s[k]=upt(s[k]+(ll)((k-j)%?-:)*c[k][j]*s[j]%mod);
s[k]=(ll)s[k]*pw(m-,mod-)%mod;//!
}
printf("%d\n",s[m]);
return ;
}

bzoj 3157 & bzoj 3516 国王奇遇记 —— 推式子的更多相关文章

  1. bzoj 3157 && bzoj 3516 国王奇遇记——推式子

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3157 https://www.lydsy.com/JudgeOnline/problem.p ...

  2. BZOJ 3516 国王奇遇记加强版(乱推)

    题意 求\(\sum_{k=1}^{n}k^mm^k (n\leq1e9,m\leq1e3)\) 思路 在<>中有一个方法用来求和,称为摄动法. 我们考虑用摄动法来求这个和式,看能不能得到 ...

  3. 3157: 国王奇遇记 & 3516: 国王奇遇记加强版 - BZOJ

    果然我数学不行啊,题解君: http://www.cnblogs.com/zhuohan123/p/3726933.html const h=; var fac,facinv,powm,s:..]of ...

  4. BZOJ3157: 国王奇遇记 & 3516: 国王奇遇记加强版

    令\[S_i=\sum_{k=1}^n k^i m^k\]我们有\[\begin{eqnarray*}(m-1)S_i & = & mS_i - S_i \\& = & ...

  5. bzoj3157 3516 国王奇遇记

    Description Input 共一行包括两个正整数N和M. Output 共一行为所求表达式的值对10^9+7取模的值. 特判m=1 m≠1时: 设S[u]=sigma(i^u*m^i) m*S ...

  6. 【BZOJ】【3157】&【BZOJ】【3516】国王奇遇记

    数论 题解:http://www.cnblogs.com/zhuohan123/p/3726933.html copy一下推导过程: 令$$S_i=\sum_{k=1}^{n}k^im^k$$ 我们有 ...

  7. 【BZOJ3157/3516】国王奇遇记(数论)

    [BZOJ3157/3516]国王奇遇记(数论) 题面 BZOJ3157 BZOJ3516 题解 先考虑怎么做\(m\le 100\)的情况. 令\(f(n,k)=\displaystyle \sum ...

  8. bzoj3157国王奇遇记(秦九韶算法+矩乘)&&bzoj233AC达成

    bz第233题,用一种233333333的做法过掉了(为啥我YY出一个算法来就是全网最慢的啊...) 题意:求sigma{(i^m)*(m^i),1<=i<=n},n<=10^9,m ...

  9. bzoj3157: 国王奇遇记

    emmm...... 直接看题解好了: BZOJ-3157. 国王奇遇记 – Miskcoo's Space O(m)不懂扔掉 总之,给我们另一个处理复杂求和的方法: 找到函数之间的递推公式! 这里用 ...

随机推荐

  1. java拾遗1----XML解析(一) DOM解析

    XML解析技术主要有三种: (1)DOM(Document Object Model)文档对象模型:是 W3C 组织推荐的解析XML 的一种方式,即官方的XML解析技术. (2)SAX(Simple ...

  2. ArcGIS API for JavaScript Bookmarks(书签)

    说明:本篇博文介绍的是ArcGIS API for JavaScript中的 Bookmarks(书签) ,书签的作用是,把地图放大到一个地方 添加书签,书签名称可以和地图名称一直,单击标签 地图会定 ...

  3. Unknown Entity namespace alias 'BaseMemberBundle'.

    $em = $this->getDoctrine()->getManager('member');//要记得写上member $repo = $em->getRepository(' ...

  4. mysql 修改表名的方法:sql语句

    在使用mysql时,经常遇到表名不符合规范或标准,但是表里已经有大量的数据了,如何保留数据,只更改表名呢? 可以通过建一个相同的表结构的表,把原来的数据导入到新表中,但是这样视乎很麻烦. 能否简单使用 ...

  5. Thriftpy一个简单的例子

    sleep.thrift文件(什么是thrift文件?),文件内容如下,该文件定义了一个Sleep服务,该服务提供一个sleep方法,sleep方法接受一个32位int类型的参数且没有返回值 serv ...

  6. Codeforces 351B Jeff and Furik:概率 + 逆序对【结论题 or dp】

    题目链接:http://codeforces.com/problemset/problem/351/B 题意: 给你一个1到n的排列a[i]. Jeff和Furik轮流操作,Jeff先手. Jeff每 ...

  7. Python3之hashlib模块

    Python3之hashlib   简介: 用于加密相关的操作,代替了md5模块和sha模块,主要提供SHA1,SHA224,SHA256,SHA384,SHA512,MD5算法.在python3中已 ...

  8. kaggle 欺诈信用卡预测——不平衡训练样本的处理方法 综合结论就是:随机森林+过采样(直接复制或者smote后,黑白比例1:3 or 1:1)效果比较好!记得在smote前一定要先做标准化!!!其实随机森林对特征是否标准化无感,但是svm和LR就非常非常关键了

    先看数据: 特征如下: Time Number of seconds elapsed between each transaction (over two days) numeric V1 No de ...

  9. Netty组件理解(转载)

    转载的文章,写的非常好.   一.先纵览一下Netty,看看Netty都有哪些组件?        为了更好的理解和进一步深入Netty,我们先总体认识一下Netty用到的组件及它们在整个Netty架 ...

  10. 关于pyhton中的__xxx__格式的方法与变量的理解

    python中类似__xx__的方法和变量是python系统内定义的方法和变量,都是具有特殊意义的基础变量和方法,一般不要擅自使用,除非知道自己在干什么. 具体查看python内置模块builtins ...