题目背景

原 维护队列 参见P1903

题目描述

某一天\(WJMZBMR\)在打\(osu~~~\)但是他太弱逼了,有些地方完全靠运气:(

我们来简化一下这个游戏的规则

有\(n\)次点击要做,成功了就是\(`o`\),失败了就是\(`x`\),分数是按\(combo\)计算的,连续\(a\)个\(combo\)就有\(a\times a\)分,\(combo\)就是极大的连续\(`o`\)。

比如\(`ooxxxxooooxxx`\),分数就是\(2 \times 2 + 4 \times 4 = 4\) +16=20。

\(Sevenkplus\)闲的慌就看他打了一盘,有些地方跟运气无关要么是\(`o`\)要么是\(`x`\),有些地方\(`o`\)或者\(`x`\)各有\(50\%\)的可能性,用\(`?`\)号来表示。

比如\(`oo?xx`\)就是一个可能的输入。 那么\(WJMZBMR\)这场\(osu\)的期望得分是多少呢?

比如\(`oo?xx`\)的话,\(`?`\)是\(`o`\)的话就是\(`oooxx` => 9\),是\(x\)的话就是\(`ooxxx` => 4\)

期望自然就是\((4+9)/2 =6.5\)了

输入输出格式

输入格式:

第一行一个整数\(n\),表示点击的个数

接下来一个字符串,每个字符都是\(`o`,`x`,`?`\)中的一个

输出格式:

一行一个浮点数表示答案

四舍五入到小数点后\(4\)位

如果害怕精度跪建议用\(long double\)或者\(extended\)

输入输出样例

输入样例#1:

4
????

输出样例#1:

4.1250

说明

\(osu\)很好玩的哦

\(WJMZBMR\)技术还行(雾),\(x\)基本上很少呢

思路:用dp数组表示期望值,用f数组表示到某位置时连续的o的个数。然后进行分类讨论:

1.当\(s[i]\)为\(’o’\)时,\(dp[i]=dp[i-1]+2×f[i-1]+1,f[i]=f[i-1]+1\);

因为\((x+1)^2=x^2+2 \times x + 1\)

2.当\(s[i]\)为\(‘x’\)时,\(dp[i]=dp[i-1],f[i]=0\);

3.\(else\) 期望和的平均值就好咯,因为概率都是\(0.5\),所以都乘\(0.5\)相加就可以了。

代码:

#include<cstdio>
#include<cstring>
#define dl double
#define maxn 1000007
using namespace std;
int n;
dl dp[maxn],f[maxn];
char s[maxn];
int main() {
scanf("%d%s",&n,s+1);
int len=strlen(s+1);
for(int i=1;i<=len;++i) {
if(s[i]=='x') dp[i]=dp[i-1],f[i]=0;
else if(s[i]=='o') dp[i]=dp[i-1]+2*f[i-1]+1,f[i]=f[i-1]+1;
else dp[i]=dp[i-1]+f[i-1]+0.5,f[i]=(f[i-1]+1)*0.5;
}
printf("%0.4lf\n",dp[len]);
return 0;
}

洛谷 P1365 WJMZBMR打osu! / Easy的更多相关文章

  1. 洛谷P1365 WJMZBMR打osu! / Easy——期望DP

    题目:https://www.luogu.org/problemnew/show/P1365 平方和怎样递推? 其实就是 (x+1)^2 = x^2 + 2*x + 1: 所以我们要关注这里的 x — ...

  2. 洛谷 1365 WJMZBMR打osu! / Easy

    题目:https://www.luogu.org/problemnew/show/P1365 大水题.记录一下o的期望长度. 关键是(x+1)^2=x^2+2*x+1. #include<ios ...

  3. P1365 WJMZBMR打osu! / Easy

    题目背景 原 维护队列 参见P1903 题目描述 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:( 我们来简化一下这个游戏的规则 有 nnn 次点击要做,成功了就是o,失败了 ...

  4. luogu P1365 WJMZBMR打osu! / Easy(期望DP)

    题目背景 原 维护队列 参见P1903 题目描述 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:( 我们来简化一下这个游戏的规则 有nnn次点击要做,成功了就是o,失败了就是 ...

  5. Luogu P1365 WJMZBMR打osu! / Easy

    概率期望专题首杀-- 毒瘤dp 首先根据数据范围推断出复杂度在O(n)左右 但不管怎么想都是n^2-- 晚上躺在床上吃东西的时候(误)想到之前有几道dp题是通过前缀和优化的 而期望的可加性又似乎为此创 ...

  6. WJMZBMR打osu! / Easy

    WJMZBMR打osu! / Easy 有一个由o,x,?组成的长度为n的序列,?等概率变为o,x,定义序列权值为连续o的长度o的平方之和,询问权值的期望, 解 注意到权值不是简单的累加关系,存在平方 ...

  7. 【洛谷1654/BZOJ4318】OSU!(期望DP)

    题目: 洛谷1654 分析: 本人数学菜得要命,这题看了一整天才看明白-- 先说说什么是"期望".不太严谨地说,若离散型随机变量(可以看作"事件")\(X\)取 ...

  8. P1365 WJMZBMR打osu! / Easy-洛谷luogu

    传送门 题目背景 原 维护队列 参见P1903 题目描述 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:( 我们来简化一下这个游戏的规则 有nn次点击要做,成功了就是o,失败 ...

  9. [Luogu1365] WJMZBMR打osu! / Easy

    Description 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:( 我们来简化一下这个游戏的规则 有 \(n\) 次点击要做,成功了就是o,失败了就是x,分数是按com ...

随机推荐

  1. type_traits.h

    type_traits.h // Filename: type_traits.h // Comment By: 凝霜 // E-mail: mdl2009@vip.qq.com // Blog: ht ...

  2. 【leetcode刷题笔记】Sqrt(x)

    Implement int sqrt(int x). Compute and return the square root of x. 题解:二分的方法,从0,1,2.....x搜索sqrt(x)的值 ...

  3. 线段树Final版本

    结构体是个好东西... 看着逼格很高 #include<iostream> #include<cstdio> #include<cstdlib> #include& ...

  4. ACM学习历程—HDU5585 Numbers(数论 || 大数)(BestCoder Round #64 (div.2) 1001)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5585 题目大意就是求大数是否能被2,3,5整除. 我直接上了Java大数,不过可以对末尾来判断2和5, ...

  5. 简单易懂dubbo入门实例

    一.创建Maven多模块项目 项目结构如下 模块介绍: dubbo-api            ----API接口 dubbo-consumer ----消费者 dubbo-provider     ...

  6. JAVA 1.5 并发之 Executor框架 (二)execute VS submit

    http://www.cnblogs.com/rockman12352/p/3788688.html 上一篇对于整体框架讲了很多东西,但是具体在使用时有一些细节并没有说出来 首先是执行任务 execu ...

  7. canvas变换(移动,缩放等)

    代码: 1 /** 2 * Created by Administrator on 2016/1/30. 3 */ 4 function draw (id){ 5 var canvas = docum ...

  8. 人物-IT-雷军:雷军

    ylbtech-人物-IT-雷军:雷军 雷军 (全国工商联副主席,小米科技创始人.董事长) 雷军,1969年12月16日出生于湖北仙桃,毕业于武汉大学,是中国大陆著名天使投资人.  雷军作为中国互联网 ...

  9. Redis的安装和配置文件

    实验环境:Centos6.8 Redis版本:3.0.6 下载Redis,并放到/usr/local/soft下: yum -y install gcc automake autoconf libto ...

  10. JavaScript原型模式(prototype)

    1.原型是一个对象,其他对象可以通过它实现属性的继承所有对象在默认的情况下都有一个原型,因为原型的本身也是对象,所以一个类的真正原型是被类的内部[prototype]属性所指出.每个函数都有一个属性叫 ...