题目来源:http://poj.org/problem?id=1022

题目大意:

  有一些4维的单位体积的立方体盒子,每个立方体有8个面。要用一个大的4为盒子将它们包起来,求最小的大盒子体积。

输入:第一行为测试用例数。每个用例的第一行为单位立方体数目n。接下来的n行每行为一个立方体的信息。每行第一个数字为还立方体的编号,接下来的8个整数分别为对应面相邻的立方体的编号。该面没有邻居则为0.(给出的都是单一刚体。)

输出:最小的能把这个由小4D立方体拼起来的形状的盒子的体积。


Sample Input

1
9
1 2 3 4 5 6 7 8 9
2 0 1 0 0 0 0 0 0
3 1 0 0 0 0 0 0 0
4 0 0 0 1 0 0 0 0
5 0 0 1 0 0 0 0 0
6 0 0 0 0 0 1 0 0
7 0 0 0 0 1 0 0 0
8 0 0 0 0 0 0 0 1
9 0 0 0 0 0 0 1 0

Sample Output

81

本题题干描述得很复杂,想象起来也有一些抽象,其实很简单,跟3D的情况联系起来想就可以了。3D求包围盒的方法推广至4D即可。

 //////////////////////////////////////////////////////////////////////////
// POJ1022 Packing Unit 4D Cubes
// Memory: 300K Time: 16MS
// Language: C++ Result: Accepted
////////////////////////////////////////////////////////////////////////// #include <iostream>
#include <vector>
#include <map> using namespace std; class Cube {
public:
int x1p, x1n, x2p, x2n, x3p, x3n, x4p, x4n;
};
class Pos {
public:
int id;
int x1, x2, x3, x4;
}; int main() {
int ncase;
cin >> ncase;
for (int caseNo = ; caseNo <= ncase; ++caseNo) {
int n;
map<int, Cube> cubes;
cin >> n;
for (int i = ; i <= n; ++i) {
int id;
cin >> id;
Cube cube;
cin >> cube.x1p >> cube.x1n >> cube.x2p >> cube.x2n
>> cube.x3p >> cube.x3n >> cube.x4p >> cube.x4n;
cubes[id] = cube;
}
bool ok = true;
vector<Pos> solid;
Pos firstPos;
firstPos.id = (*cubes.begin()).first;
firstPos.x1 = firstPos.x2 = firstPos.x3 = firstPos.x4 = ;
solid.push_back(firstPos);
for (map<int, Cube>::iterator itc = cubes.begin(); itc != cubes.end(); ++itc) {
Cube cube1;
int id = (*itc).first;
int x1p = (*itc).second.x1p;
//x1p
if (x1p != ) {
if (cubes[x1p].x1n != id) {
ok = false;
break;
}
bool f = true;
Pos pos;
for (vector<Pos>::iterator its = solid.begin(); its != solid.end(); ++its) {
if (f == false) break;
if ((*its).id == id) {
pos.id = x1p;
pos.x1 = (*its).x1 + ;
pos.x2 = (*its).x2;
pos.x3 = (*its).x3;
pos.x4 = (*its).x4;
for (vector<Pos>::iterator itr = solid.begin(); itr != solid.end(); ++itr) {
if ((*itr).id == x1p) {
f = false;
break;
}
}
}
}
if (f == true) {
solid.push_back(pos);
}
} //x1n
int x1n = (*itc).second.x1n;
if (x1n != ) {
if (cubes[x1n].x1p != id) {
ok = false;
break;
}
bool f = true;
Pos pos;
for (vector<Pos>::iterator its = solid.begin(); its != solid.end(); ++its) {
if (f == false) break;
if ((*its).id == id) {
pos.id = x1n;
pos.x1 = (*its).x1 - ;
pos.x2 = (*its).x2;
pos.x3 = (*its).x3;
pos.x4 = (*its).x4;
for (vector<Pos>::iterator itr = solid.begin(); itr != solid.end(); ++itr) {
if ((*itr).id == x1n) {
f = false;
break;
}
}
}
}
if (f == true) {
solid.push_back(pos);
}
} //x2p
int x2p = (*itc).second.x2p;
if (x2p != ) {
if (cubes[x2p].x2n != id) {
ok = false;
break;
}
bool f = true;
Pos pos;
for (vector<Pos>::iterator its = solid.begin(); its != solid.end(); ++its) {
if (f == false) break;
if ((*its).id == id) {
pos.id = x2p;
pos.x1 = (*its).x1;
pos.x2 = (*its).x2 + ;
pos.x3 = (*its).x3;
pos.x4 = (*its).x4;
for (vector<Pos>::iterator itr = solid.begin(); itr != solid.end(); ++itr) {
if ((*itr).id == x2p) {
f = false;
break;
}
}
}
}
if (f == true) {
solid.push_back(pos);
}
}
//x2n
int x2n = (*itc).second.x2n;
if (x2n != ) {
if (cubes[x2n].x2p != id) {
ok = false;
break;
}
bool f = true;
Pos pos;
for (vector<Pos>::iterator its = solid.begin(); its != solid.end(); ++its) {
if (f == false) break;
if ((*its).id == id) {
pos.id = x2n;
pos.x1 = (*its).x1;
pos.x2 = (*its).x2 - ;
pos.x3 = (*its).x3;
pos.x4 = (*its).x4;
for (vector<Pos>::iterator itr = solid.begin(); itr != solid.end(); ++itr) {
if ((*itr).id == x2n) {
f = false;
break;
}
}
}
}
if (f == true) {
solid.push_back(pos);
}
} //x3p
int x3p = (*itc).second.x3p;
if (x3p != ) {
if (cubes[x3p].x3n != id) {
ok = false;
break;
}
bool f = true;
Pos pos;
for (vector<Pos>::iterator its = solid.begin(); its != solid.end(); ++its) {
if (f == false) break;
if ((*its).id == id) {
pos.id = x3p;
pos.x1 = (*its).x1;
pos.x2 = (*its).x2;
pos.x3 = (*its).x3 + ;
pos.x4 = (*its).x4;
for (vector<Pos>::iterator itr = solid.begin(); itr != solid.end(); ++itr) {
if ((*itr).id == x3p) {
f = false;
break;
}
}
}
}
if (f == true) {
solid.push_back(pos);
}
}
//x3n
int x3n = (*itc).second.x3n;;
if (x3n != ) {
if (cubes[x3n].x3p != id) {
ok = false;
break;
}
bool f = true;
Pos pos;
for (vector<Pos>::iterator its = solid.begin(); its != solid.end(); ++its) {
if (f == false) break;
if ((*its).id == id) {
pos.id = x3n;
pos.x1 = (*its).x1;
pos.x2 = (*its).x2;
pos.x3 = (*its).x3 - ;
pos.x4 = (*its).x4;
for (vector<Pos>::iterator itr = solid.begin(); itr != solid.end(); ++itr) {
if ((*itr).id == x3n) {
f = false;
break;
}
}
}
}
if (f == true) {
solid.push_back(pos);
}
}
//x4p
int x4p = (*itc).second.x4p;
if (x4p != ) {
if (cubes[x4p].x4n != id) {
ok = false;
break;
}
bool f = true;
Pos pos;
for (vector<Pos>::iterator its = solid.begin(); its != solid.end(); ++its) {
if (f == false) break;
if ((*its).id == id) {
pos.id = x4p;
pos.x1 = (*its).x1;
pos.x2 = (*its).x2;
pos.x3 = (*its).x3;
pos.x4 = (*its).x4 + ;
for (vector<Pos>::iterator itr = solid.begin(); itr != solid.end(); ++itr) {
if ((*itr).id == x4p) {
f = false;
break;
}
}
}
}
if (f == true) {
solid.push_back(pos);
}
}
//x4n
int x4n = (*itc).second.x4n;
if (x4n != ) {
if (cubes[x4n].x4p != id) {
ok = false;
break;
}
bool f = true;
Pos pos;
for (vector<Pos>::iterator its = solid.begin(); its != solid.end(); ++its) {
if (f == false) break;
if ((*its).id == id) {
pos.id = x4n;
pos.x1 = (*its).x1;
pos.x2 = (*its).x2;
pos.x3 = (*its).x3;
pos.x4 = (*its).x4 - ;
for (vector<Pos>::iterator itr = solid.begin(); itr != solid.end(); ++itr) {
if ((*itr).id == x4n) {
f = false;
break;
}
}
}
}
if (f == true) {
solid.push_back(pos);
}
}
}
if (solid.size() != n) {
ok = false;
}
if (ok == false) {
cout << "Inconsistent" << endl;
continue;
}
int x1min = ;
int x1max = -;
int x2min = ;
int x2max = -;
int x3min = ;
int x3max = -;
int x4min = ;
int x4max = -;
for (vector<Pos>::iterator it = solid.begin(); it != solid.end(); ++it) {
if (x1min >(*it).x1) x1min = (*it).x1;
if (x1max < (*it).x1) x1max = (*it).x1;
if (x2min >(*it).x2) x2min = (*it).x2;
if (x2max < (*it).x2) x2max = (*it).x2;
if (x3min >(*it).x3) x3min = (*it).x3;
if (x3max < (*it).x3) x3max = (*it).x3;
if (x4min >(*it).x4) x4min = (*it).x4;
if (x4max < (*it).x4) x4max = (*it).x4;
}
int vol = (x1max - x1min + ) * (x2max - x2min + ) * (x3max - x3min + ) * (x4max - x4min + );
cout << vol << endl;
}
system("pause");
return ;
}

POJ1022 Packing Unit 4D Cubes的更多相关文章

  1. POJ题目排序的Java程序

    POJ 排序的思想就是根据选取范围的题目的totalSubmittedNumber和totalAcceptedNumber计算一个avgAcceptRate. 每一道题都有一个value,value ...

  2. Daily Query

    -- GI Report SELECT A.PLPKLNBR, D.DNDNHNBR, F.DNSAPCPO, C.PPPRODTE, A.GNUPDDTE GI_DATE, B.INHLDCDE, ...

  3. 【Moqui业务逻辑翻译系列】Shipment Receiver Receives Shipment with Packing Slip but no PO

    Shipment Receiver receives shipment. It has invoice tucked into it. Receiver records vendor name, ve ...

  4. ABP(现代ASP.NET样板开发框架)系列之12、ABP领域层——工作单元(Unit Of work)

    点这里进入ABP系列文章总目录 基于DDD的现代ASP.NET开发框架--ABP系列之12.ABP领域层——工作单元(Unit Of work) ABP是“ASP.NET Boilerplate Pr ...

  5. ABP源码分析十:Unit Of Work

    ABP以AOP的方式实现UnitOfWork功能.通过UnitOfWorkRegistrar将UnitOfWorkInterceptor在某个类被注册到IOCContainner的时候,一并添加到该类 ...

  6. Failed to stop iptables.service: Unit iptables.service not loaded.

    redhat 7 [root@lk0 ~]# service iptables stop Redirecting to /bin/systemctl stop iptables.service Fai ...

  7. 4D卓越团队-两天培训总结

    上周末参加了公司组织的领导力培训课程-4D卓越团队(创业型团队领导力训练项目),感觉有一些用,在这里分享一下. 课前游戏 培训老师先带我们做了一个游戏:每一个人,在同时参加培训的人中找到另外的 6 个 ...

  8. VS2012 Unit Test 个人学习汇总(含目录)

    首先,给出MSDN相关地址:http://msdn.microsoft.com/en-us/library/Microsoft.VisualStudio.TestTools.UnitTesting.a ...

  9. VS2012 Unit Test —— 我对IdleTest库动的大手术以及对Xml相关操作进行测试的方式

    [1]我的IdleTest源码地址:http://idletest.codeplex.com/ [2]IdleTest改动说明:2013年10月份在保持原有功能的情况下对其动了较大的手术,首先将基本的 ...

随机推荐

  1. BZOJ4676 Xor-Mul棋盘

    传送门 题目大意懒得写了,题目说的挺明白的了 题解 主要的难点在于异或意义下的最大值和很玄学,但不难发现这道题中让你定义的$D_{i,j}$只参与异或运算,所以我们可以逐位进行讨论.所以我们每一位就只 ...

  2. bzoj1059ZJOI2017矩阵游戏

    小Q是一个非常聪明的孩子,除了国际象棋,他还很喜欢玩一个电脑益智游戏——矩阵游戏.矩阵游戏在一个N *N黑白方阵进行(如同国际象棋一般,只是颜色是随意的).每次可以对该矩阵进行两种操作:行交换操作:选 ...

  3. CH6802 車的放置 和 CH6B24 Place the Robots

    6802 車的放置 0x60「图论」例题 描述 给定一个N行M列的棋盘,已知某些格子禁止放置.问棋盘上最多能放多少个不能互相攻击的車.車放在格子里,攻击范围与中国象棋的"車"一致. ...

  4. hdu 5909 Tree Cutting —— 点分治

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=5909 点分治,每次的 rt 是必选的点: 考虑必须选根的一个连通块,可以DP,决策就是在每个子树中决定选不 ...

  5. bzoj 1941 Hide and Seek —— K-D树

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1941 曼哈顿最小距离估价:max( 0, t[x].mn[i] - v.p[i] ) + m ...

  6. HDOJ1059(多重部分和问题)

    #include<cstdio> #include<cstring> using namespace std; +; ]; int dp[SIZE]; bool check() ...

  7. HDOJ1548(DFS超内存,BFS过了)

    DFS代码 #include<iostream> #include<cstdio> using namespace std; #define Min(a,b) (a<b) ...

  8. Python:.join()函数

    转于:https://blog.csdn.net/chixujohnny/article/details/53301995 博主:chixujohnny 介绍:.join是一个字符串操作函数,将元素相 ...

  9. shell入门-grep-3-egrep

    grep -E == egrep [root@wangshaojun ~]# grep --color 'r\?o' 1.txt == egrep --color 'r?o' 1.txt ^C[roo ...

  10. 错误:Tomcat version 7.0 only supports J2EE 1.2, 1.3, 1.4, and Java EE 5 and 6 Web

    在eclipse的workspace里面找到该项目. 依次进入:.settings->org.eclipse.wst.common.project.facet.core.xml. 打开文件后,将 ...