\(\color{#0066ff}{ 题目描述 }\)

Farmer John最讨厌的农活是运输牛粪。为了精简这个过程,他产生了一个新奇的想法:与其使用拖拉机拖着装满牛粪的大车从一个地点到另一个地点,为什么不用一个巨大的便便弹弓把牛粪直接发射过去呢?(事实上,好像哪里不太对……) Farmer John的农场沿着一条长直道路而建,所以他农场上的每个地点都可以简单地用该地点在道路上的位置来表示(相当于数轴上的一个点)。FJ建造了\(N\)个弹弓(\(1 \leq N \leq 10^5\)),其中第\(i\)个弹弓可以用三个整数\(x_i\),\(y_i\)以及\(t_i\)描述,表示这个弹弓可以在\(t_i\)单位时间内将牛粪从位置\(x_i\)发射到位置\(y_i\)。

FJ有\(M\)堆牛粪需要运输(\(1 \leq M \leq 10^5\))。第\(j\)堆牛粪需要从位置\(a_j\)移动到位置\(b_j\)。使用拖拉机运输牛粪,经过路程\(d\)需要消耗\(d\)单位时间。FJ希望通过对每一堆牛粪使用至多一次弹弓来减少运输时间。FJ驾驶没有装载牛粪的拖拉机的时间不计。

对这\(M\)堆牛粪的每一堆,在FJ可以在运输过程中使用至多一次弹弓的条件下,帮助FJ求出其最小运输时间。

\(\color{#0066ff}{输入格式}\)

输入的第一行包含\(N\)和\(M\)。下面\(N\)行,每行用\(x_i\),\(y_i\),\(t_i\)(\(0 \leq x_i, y_i, t_i \leq 10^9\))描述了一个弹弓。最后\(M\)行用\(a_j\)和\(b_j\)描述了需要移动的牛粪。

\(\color{#0066ff}{输出格式}\)

输出\(M\)行,每堆牛粪一行,表示运输这堆牛粪需要的最短时间。

\(\color{#0066ff}{输入样例}\)

2 3
0 10 1
13 8 2
1 12
5 2
20 7

\(\color{#0066ff}{输出样例}\)

4
3
10

\(\color{#0066ff}{数据范围与提示}\)

none

\(\color{#0066ff}{ 题解 }\)

我们设弹弓是从x到y,询问从l到r

那么如果不加弹弓,代价是\(|r-l|\)

如果借助弹弓,显然是\(|r-y|+|l-x|+t\)

看到绝对值,要想办法去掉

于是出现了4种情况

这里拿其中一种情况举个锤子(雾

当\(r\ge y 且l\ge x\)时,拆开,\(r-y+l-x+t=l+r-x-y+t\)

于是我们把询问和弹弓的端点都离散化,并按照r排序

枚举询问,维护一个在弹弓上的指针,把所有小于当前询问r的y都加入线段树中

以\(x\)为下标,插入\(-x-y+t\),经过排序,显然第一个条件已经满足,于是我们线段树上查询\([1,l]\)的答案再加上\(l\)和\(r\)即可

其余情况分类讨论,同理

// luogu-judger-enable-o2
#include<bits/stdc++.h>
#define LL long long
LL in() {
char ch; LL x = 0, f = 1;
while(!isdigit(ch = getchar()))(ch == '-') && (f = -f);
for(x = ch ^ 48; isdigit(ch = getchar()); x = (x << 1) + (x << 3) + (ch ^ 48));
return x * f;
}
const LL inf = 999999999999999LL;
const int maxn = 6e5 + 100;
struct Tree {
protected:
struct node {
node *ch[2];
int l, r;
LL min;
node(int l = 0, int r = 0, LL min = inf): l(l), r(r), min(min) {}
void *operator new(size_t) {
static node *S = NULL, *T = NULL;
return (S == T) && (T = (S = new node[1024]) + 1024), S++;
}
void upd() { min = std::min(ch[0]->min, ch[1]->min); }
};
node *root;
void build(node *&o, int l, int r) {
o = new node(l, r, inf);
if(l == r) return;
int mid = (l + r) >> 1;
build(o->ch[0], l, mid), build(o->ch[1], mid + 1, r);
}
void lazy(node *o, int p, LL k) {
if(o->r < p || o->l > p) return;
if(o->l == o->r) return (void)(o->min = std::min(o->min, k));
lazy(o->ch[0], p, k), lazy(o->ch[1], p, k);
o->upd();
}
LL query(node *o, int l, int r) {
if(o->r < l || o->l > r) return inf;
if(l <= o->l && o->r <= r) return o->min;
return std::min(query(o->ch[0], l, r), query(o->ch[1], l, r));
}
void clr(node *o) {
o->min = inf;
if(o->l == o->r) return;
clr(o->ch[0]), clr(o->ch[1]);
}
public:
void build(int n) { build(root, 1, n); }
void lazy(int p, LL k) { lazy(root, p, k); }
LL query(int l, int r) { return query(root, l, r); }
void clr() { clr(root); }
}s;
struct Q {
int x, y;
LL val;
Q(int x = 0, int y = 0, LL val = 0): x(x), y(y), val(val) {}
friend bool operator < (const Q &a, const Q &b) {
return a.y == b.y? a.x < b.x : a.y < b.y;
}
}q[maxn], d[maxn];
int n, m;
LL a[maxn];
LL ans[maxn];
int main() {
n = in(), m = in();
int x, y, t, len = 0;
for(int i = 1; i <= n; i++) {
x = in(), y = in(), t = in();
d[i] = Q(x, y, t);
a[++len] = x, a[++len] = y; }
for(int i = 1; i <= m; i++) {
x = in(), y = in();
q[i] = Q(x, y, i);
a[++len] = x, a[++len] = y;
ans[i] = y > x? y - x : x - y;
}
std::sort(a + 1, a + len + 1);
int _ = 1;
for(int i = 2; i <= len; i++) if(a[i] != a[i - 1]) a[++_] = a[i];
len = _;
s.build(len);
for(int i = 1; i <= n; i++) {
d[i].x = std::lower_bound(a + 1, a + len + 1, d[i].x) - a;
d[i].y = std::lower_bound(a + 1, a + len + 1, d[i].y) - a;
}
for(int i = 1; i <= m; i++) {
q[i].x = std::lower_bound(a + 1, a + len + 1, q[i].x) - a;
q[i].y = std::lower_bound(a + 1, a + len + 1, q[i].y) - a;
}
std::sort(d + 1, d + n + 1);
std::sort(q + 1, q + m + 1);
int now = 1;
for(int i = 1; i <= m; i++) {
while(now <= n && d[now].y <= q[i].y) {
s.lazy(d[now].x, - a[d[now].x] - a[d[now].y] + d[now].val);
now++;
}
ans[q[i].val] = std::min(ans[q[i].val], a[q[i].x] + a[q[i].y] + s.query(1, q[i].x));
}
now = 1, s.clr();
for(int i = 1; i <= m; i++) {
while(now <= n && d[now].y <= q[i].y) {
s.lazy(d[now].x, a[d[now].x] - a[d[now].y] + d[now].val);
now++;
}
ans[q[i].val] = std::min(ans[q[i].val], - a[q[i].x] + a[q[i].y] + s.query(q[i].x, len));
}
now = n, s.clr();
for(int i = m; i >= 1; i--) {
while(now >= 1 && d[now].y >= q[i].y) {
s.lazy(d[now].x, - a[d[now].x] + a[d[now].y] + d[now].val);
now--;
}
ans[q[i].val] = std::min(ans[q[i].val], a[q[i].x] - a[q[i].y] + s.query(1, q[i].x));
}
now = n, s.clr();
for(int i = m; i >= 1; i--) {
while(now >= 1 && d[now].y >= q[i].y) {
s.lazy(d[now].x, a[d[now].x] + a[d[now].y] + d[now].val);
now--;
}
ans[q[i].val] = std::min(ans[q[i].val], - a[q[i].x] - a[q[i].y] + s.query(q[i].x, len));
} for(int i = 1; i <= m; i++) printf("%lld\n", ans[i]);
return 0;
}

P4088 [USACO18FEB]Slingshot 线段树+扫描线的更多相关文章

  1. LUOGU P4088 [USACO18FEB]Slingshot(线段树)

    传送门 解题思路 推了推式子发现是个二维数点,想了想似乎排序加线段树难写,就写了个树套树,结果写完看见空间才\(128M\)..各种奇技淫巧卡空间还是\(MLE\)到天上.后来只好乖乖的写排序+线段树 ...

  2. 【Codeforces720D】Slalom 线段树 + 扫描线 (优化DP)

    D. Slalom time limit per test:2 seconds memory limit per test:256 megabytes input:standard input out ...

  3. Codeforces VK CUP 2015 D. Closest Equals(线段树+扫描线)

    题目链接:http://codeforces.com/contest/522/problem/D 题目大意:  给你一个长度为n的序列,然后有m次查询,每次查询输入一个区间[li,lj],对于每一个查 ...

  4. 【POJ-2482】Stars in your window 线段树 + 扫描线

    Stars in Your Window Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11706   Accepted:  ...

  5. HDU 4419 Colourful Rectangle --离散化+线段树扫描线

    题意: 有三种颜色的矩形n个,不同颜色的矩形重叠会生成不同的颜色,总共有R,G,B,RG,RB,GB,RGB 7种颜色,问7种颜色每种颜色的面积. 解法: 很容易想到线段树扫描线求矩形面积并,但是如何 ...

  6. BZOJ-3228 棋盘控制 线段树+扫描线+鬼畜毒瘤

    3228: [Sdoi2008]棋盘控制 Time Limit: 10 Sec Memory Limit: 128 MB Submit: 23 Solved: 9 [Submit][Status][D ...

  7. BZOJ-3225 立方体覆盖 线段树+扫描线+乱搞

    看数据范围像是个暴力,而且理论复杂度似乎可行,然后被卡了两个点...然后来了个乱搞的线段树+扫描线.. 3225: [Sdoi2008]立方体覆盖 Time Limit: 2 Sec Memory L ...

  8. hdu 5091(线段树+扫描线)

    上海邀请赛的一道题目,看比赛时很多队伍水过去了,当时还想了好久却没有发现这题有什么水题的性质,原来是道成题. 最近学习了下线段树扫描线才发现确实是挺水的一道题. hdu5091 #include &l ...

  9. POJ1151+线段树+扫描线

    /* 线段树+扫描线+离散化 求多个矩形的面积 */ #include<stdio.h> #include<string.h> #include<stdlib.h> ...

随机推荐

  1. Oracle 数据库加密

    数据加密 动态数据(data in motion)和静态数据(data at rest),除了手动加密,其他的加密都需要oracle企业版的高级加密(额外收费——)  1 静态数据加密 Example ...

  2. HTTP请求常见错误大全

    常见的Http请求错误提示 1xx - 信息提示这些状态代码表示临时的响应.客户端在收到常规响应之前,应准备接收一个或多个 1xx 响应.100 - 继续101 - 切换协议 2xx - 成功这类状态 ...

  3. 【转】火狐浏览器中firebug插件的时间线域解释

      又到了上图时间了..对照这张图,各个时间所对应的意义就很简单明了.   阻挡(Blocking):每个浏览器有并发连接数量的上限(例如Firefox对每个host限制6个连接),如果当前建立的连接 ...

  4. apache + tomcat 负载均衡分布式集群配置

    Tomcat集群配置学习篇-----分布式应用 现目前基于javaWeb开发的应用系统已经比比皆是,尤其是电子商务网站,要想网站发展壮大,那么必然就得能够承受住庞大的网站访问量:大家知道如果服务器访问 ...

  5. 部署和调优 1.8 samba 部署和优化-2

    Samba 可以实现 Linux 和 Windows 机器相互共享文件,这对我们来说是非常实用的.下面做几个实践,来了解samba,注意:在实践之前,请先检测 Selinux 是否关闭,否则可能会实践 ...

  6. 向linux内核增加一个系统调用-1

    验证编辑编译内核的流程,并增加新的系统调用 注意:需要/目录至少10GB空间,/boot目录500MB空间 下载内核并解压 kernel下载 百度云搬运 密码: qc8b 进入 /usr/src目录 ...

  7. Docker的Gitlab镜像的使用

    Gitlab是一款非常强大的开源源码管理系统.它支持基于Git的源码管理.代码评审.issue跟踪.活动管理.wiki页面,持续集成和测试等功能.基于Gitlab,用户可以自己搭建一套类似Github ...

  8. mybatis项目报错:java.sql.SQLException: ORA-00911: 无效字符 解决方法

    如果你用java写程序访问数据库,出现这个问题:java.sql.SQLException: ORA-00911: 无效字符 at oracle.jdbc.driver.DatabaseError.t ...

  9. Codeforces 1076E Vasya and a Tree(树状数组)或dfs

    题意:给你一颗以1为根节点的树,初始所有节点的权值为0,然后有m个操作,每个操作将点x的所有距离不超过d的节点权值+1,问经过m次操作后每个节点权值是多少? 思路:如果是一个序列,就可以直接用树状数组 ...

  10. 解析IFC数据并转成json格式

    { "com.bim.ifc.ifc2x3.ifc2x3tc1.IfcBuilding (#104)-": [{ "objKey": "GlobalI ...