点此看题面

大致题意: 在\(N×N\)的棋盘里面放\(K\)个国王,使他们互不攻击,共有多少种摆放方案(国王能攻击到它周围的8个格子)。

状压\(DP\)

一看到这道题我就想到了经典的八皇后问题,但是,这道题其实可以用状压\(DP\)来做。

我们可以发现,影响该行国王摆放方法的只有上一行国王的摆放方式,因此,对于第\(i\)行,我们只需要知道第\(i-1\)行的国王的摆放方式即可。所以,我们可以用\(f[i][j]\)来记录第\(i\)行,国王摆放方式为\(j\)的方案数即可(这里将摆放方式状态压缩成一个数)。

注意要先预处理一下对于某一行的一种摆放方式是否合法且用了多少个国王。

代码

#include<bits/stdc++.h>
#define LL long long
#define N 9
using namespace std;
int n,m,could[(1<<N)+5],tot[(1<<N)+5];
LL f[N+5][N*N+5][(1<<N)+5];
inline char tc()
{
static char ff[100000],*A=ff,*B=ff;
return A==B&&(B=(A=ff)+fread(ff,1,100000,stdin),A==B)?EOF:*A++;
}
inline void read(int &x)
{
x=0;int f=1;char ch;
while(!isdigit(ch=tc())) f=ch^'-'?1:-1;
while(x=(x<<3)+(x<<1)+ch-'0',isdigit(ch=tc()));
x*=f;
}
inline void write(LL x)
{
if(x<0) putchar('-'),x=-x;
if(x>9) write(x/10);
putchar(x%10+'0');
}
inline void Start()//预处理每种摆放方案是否合法且用了几个国王
{
register int i;
for(i=0;i<(1<<n);++i)
{
could[i]=1,tot[i]=0;
for(int num=i,lst=0;num;lst=num&1,num>>=1)
{
if(num&1)//若当前一位摆放了国王
{
if(lst) could[i]=0;//若前一位摆放了国王,则此方案不合法
++tot[i];//将国王的使用数量加1
}
}
}
}
inline int check(int x,int y)
{
return !((x&y)||((x<<1)&y)||(x&(y<<1)));//比较两行的国王是否会攻击到对方
}
int main()
{
register int i,j,k,l;
read(n),read(m),Start(),f[0][0][0]=1;
for(i=1;i<=n;++i)//核心代码
for(j=0;j<(1<<n);++j)
if(could[j]&&tot[j]<=m)
for(k=tot[j];k<=m;++k)
for(l=0;l<(1<<n);++l)
if(could[l]&&check(j,l)) f[i][k][j]+=f[i-1][k-tot[j]][l];//进行转移,计算该行当前摆放方式的方案数
LL ans=0;
for(j=0;j<(1<<n);++j) ans+=f[n][m][j];//统计答案
return write(ans),0;
}

【BZOJ1087】[SCOI2005] 互不侵犯King(状压DP)的更多相关文章

  1. [BZOJ1087] [SCOI2005] 互不侵犯King (状压dp)

    Description 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. Input 只有一行,包 ...

  2. BZOJ 1087: [SCOI2005]互不侵犯King [状压DP]

    1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3336  Solved: 1936[Submit][ ...

  3. 【BZOJ1087】 [SCOI2005]互不侵犯King 状压DP

    经典状压DP. f[i][j][k]=sum(f[i-1][j-cnt[k]][k]); cnt[i]放置情况为i时的国王数量 前I行放置情况为k时国王数量为J #include <iostre ...

  4. BZOJ 1087 [SCOI2005]互不侵犯King ——状压DP

    [题目分析] 沉迷水题,吃枣药丸. [代码] #include <cstdio> #include <cstring> #include <iostream> #i ...

  5. 互不侵犯king (状压dp)

    互不侵犯king (状压dp) 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子.\(1\le n\ ...

  6. BZOJ-1087 互不侵犯King 状压DP+DFS预处理

    1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec Memory Limit: 162 MB Submit: 2337 Solved: 1366 [Submit][ ...

  7. bzoj1087 互不侵犯King 状压dp+bitset

    题目传送门 题目大意:中文题面. 思路:又是格子,n又只有9,所以肯定是状压dp,很明显上面一行的摆放位置会影响下一行,所以先预处理出怎样的二进制摆放法可以放在上下相邻的两行,这里推荐使用bitset ...

  8. [SCOI2005]互不侵犯(状压DP)

    嗝~算是状压DP的经典题了~ #\(\mathcal{\color{red}{Description}}\) 在\(N×N\)的棋盘里面放\(K\)个国王,使他们互不攻击,共有多少种摆放方案.国王能攻 ...

  9. 【洛谷 P1896】[SCOI2005]互不侵犯(状压dp)

    题目链接 题意:在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 这是道状压\(DP\)好题啊.. ...

  10. 【题解】洛谷P1896 [SCOI2005] 互不侵犯(状压DP)

    洛谷P1896:https://www.luogu.org/problemnew/show/P1896 前言 这是一道状压DP的经典题 原来已经做过了 但是快要NOIP 复习一波 关于一些位运算的知识 ...

随机推荐

  1. CodeForces 137C【贪心+优先队列】

    这种区间的贪心好像都出"烂"了? 不过还是想写一下... 先按照区间左端点排序一下,然后搞个优先队列维护当前最小的右端点. #include <bits/stdc++.h&g ...

  2. 反射实现数据库增删改查DAO及DAOImpl源代码(二)

    配置文件源码 配置文件主要用于配置数据库对象(javaBean),配置表名,配置查询条件,配置删除条件 文件名称:objectConfigPath.properties 这个配置文件里面配置的是另外一 ...

  3. java 多线程学习笔记(二) -- IO密集型任务

    IO密集型是指对IO操作较多的任务.下面以查询一些股票价格任务为例: YahooFinance.java public class YahooFinance { public static doubl ...

  4. 求组合数 C(n,m)

    下面内容转自: http://blog.csdn.net/zengaming/article/details/63681754 一.求解C(n, m) 公式一: 公式二: 公式二可以这么理解,从n个物 ...

  5. 洛谷P1098 字符串的展开

    P1098 字符串的展开 题目描述 在初赛普及组的“阅读程序写结果”的问题中,我们曾给出一个字符串展开的例子:如果在输入的字符串中,含有类似于“d-h”或者“4-8”的字串,我们就把它当作一种简写,输 ...

  6. 【转载】C#中可使用Unity容器实现属性注入

    简介 Unity :Unity是微软团队开发的一个轻量级,可扩展的依赖注入容器,为松散耦合应用程序提供了很好的解决方案,支持构造器注入,属性注入,方法注入. 控制反转:(Inversion of Co ...

  7. 解读人:闫克强,Metabolic and gut microbial characterization of obesity-prone mice under high-fat diet(高脂饮食下易胖倾向小鼠的代谢和肠道微生物菌群特征分析)

    单位: 上海中医药大学 蚌埠医学院 上海交通大学附属第六人民医院 夏威夷大学癌症中心 第二军医大学 技术:非靶向代谢组学,16S rRNA测序技术 一. 概述: 本研究对小鼠进行高脂饮食,根据体重增长 ...

  8. C. Increasing by Modulo

    给定n个模m的数字 可以选择k个数字进行操作,操作时对该数字进行+1模m 求解最少多少次操作可以使得该数列变成单调不下降序列 实际上就是二分操作数目,其中操作数目肯定不会超过m 然后我们将左右边界变成 ...

  9. win下rabbitmq的安装

    安装erlang 10.4 和 rabbitmq 3.7.5 然后关闭rabbitmq服务 然后设置 erlang和rabbitmq的环境变量 ERLANG_HOME=erlang安装目录 RABBI ...

  10. vue项目中将后台返回的创建时间(时间戳格式)转换成日期格式

    第一步:下载安装依赖包 npm install -save moment 第二步: 在main.js文件引入 1. import moment from 'moment' 其中还包含 2. //全局过 ...