题目描述

逆时针给出n个凸多边形的顶点坐标,求它们交的面积。例如n=2时,两个凸多边形如下图:

则相交部分的面积为5.233。

输入

第一行有一个整数n,表示凸多边形的个数,以下依次描述各个多边形。第i个多边形的第一行包含一个整数mi,表示多边形的边数,以下mi行每行两个整数,逆时针给出各个顶点的坐标。

输出

输出文件仅包含一个实数,表示相交部分的面积,保留三位小数。

样例输入

2
6
-2 0
-1 -2
1 -2
2 0
1 2
-1 2
4
0 -3
1 -1
2 2
-1 0

样例输出

5.233


题解

半平面交

题意即求一堆半平面的公共部分,即半平面交。

暴力半平面交可以过,但还是学了一下双端队列求半平面交的方法:

不妨设直线的右侧为半平面,那么把所有半平面按照直线的极角从小到大排序,极角相同的保留限制条件最严格的,即最右侧的。

排序去重以后扫一遍所有直线,判断分别队尾交点和队头交点是否在当前直线左端,在的话就踢出双端队列。然后再把当前半平面压入双端队列队尾。

最后,队尾的交点与队首可能不满足条件,因此还要弹掉队尾不合法的部分。

求面积的话直接上叉积就可以了。

废话不多说,直接上代码:

#include <cmath>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define eps 1e-9
#define N 510
using namespace std;
struct point
{
double x , y;
point() {}
point(double a , double b) {x = a , y = b;}
point operator+(const point &a)const {return point(x + a.x , y + a.y);}
point operator-(const point &a)const {return point(x - a.x , y - a.y);}
point operator*(const double &a)const {return point(a * x , a * y);}
}p[N];
struct line
{
point p , v;
double ang;
}a[N] , q[N] , c[N];
inline double cross(point a , point b) {return a.x * b.y - a.y * b.x;}
inline bool left(line a , point b) {return cross(a.v , b - a.p) > eps;}
inline point inter(line a , line b)
{
point u = a.p - b.p;
double tmp = cross(b.v , u) / cross(a.v , b.v);
return a.p + a.v * tmp;
}
bool cmp(const line &a , const line &b)
{
return fabs(a.ang - b.ang) < eps ? left(a , b.p) : a.ang < b.ang;
}
int main()
{
int n , i , j , m , cnt = 0 , tot = 1 , l = 1 , r = 1;
double ans = 0;
scanf("%d" , &n);
for(i = 1 ; i <= n ; i ++ )
{
scanf("%d" , &m);
for(j = 1 ; j <= m ; j ++ ) scanf("%lf%lf" , &p[j].x , &p[j].y);
for(j = 1 ; j <= m ; j ++ ) a[++cnt].p = p[j] , a[cnt].v = p[j] - p[j % m + 1] , a[cnt].ang = atan2(a[cnt].v.y , a[cnt].v.x);
}
sort(a + 1 , a + cnt + 1 , cmp);
for(i = 2 ; i <= cnt ; i ++ )
if(fabs(a[i].ang - a[i - 1].ang) > eps)
a[++tot] = a[i];
q[1] = a[1];
for(i = 2 ; i <= tot ; i ++ )
{
while(l < r && left(a[i] , p[r - 1])) r -- ;
while(l < r && left(a[i] , p[l])) l ++ ;
q[++r] = a[i];
if(l < r) p[r - 1] = inter(q[r - 1] , q[r]);
}
while(l < r && left(q[l] , p[r - 1])) r -- ;
p[r] = inter(q[l] , q[r]) , p[r + 1] = p[l];
for(i = l ; i <= r ; i ++ ) ans += cross(p[i] , p[i + 1]);
printf("%.3lf\n" , ans / 2);
return 0;
}

【bzoj2618】[Cqoi2006]凸多边形 半平面交的更多相关文章

  1. BZOJ2618[Cqoi2006]凸多边形——半平面交

    题目描述 逆时针给出n个凸多边形的顶点坐标,求它们交的面积.例如n=2时,两个凸多边形如下图: 则相交部分的面积为5.233. 输入 第一行有一个整数n,表示凸多边形的个数,以下依次描述各个多边形.第 ...

  2. bzoj2618[Cqoi2006]凸多边形 半平面交

    这是一道半平面交的裸题,第一次写半平面交,就说一说我对半平面交的理解吧. 所谓半平面交,就是求一大堆二元一次不等式的交集,而每个二元一次不等式的解集都可以看成是在一条直线的上方或下方,联系直线的标准方 ...

  3. P4196 [CQOI2006]凸多边形 半平面交

    \(\color{#0066ff}{题目描述}\) 逆时针给出n个凸多边形的顶点坐标,求它们交的面积.例如n=2时,两个凸多边形如下图: 则相交部分的面积为5.233. \(\color{#0066f ...

  4. luogu4196 [CQOI2006]凸多边形 半平面交

    据说pkusc出了好几年半平面交了,我也来水一发 ref #include <algorithm> #include <iostream> #include <cstdi ...

  5. POJ3525 半平面交

    题意:求某凸多边形内部离边界最远的点到边界的距离 首先介绍半平面.半平面交的概念: 半平面:对于一条有向直线,它的方向的左手侧就是它所划定的半平面范围.如图所示: 半平面交:多个半平面的交集.有点类似 ...

  6. bzoj 4445 小凸想跑步 - 半平面交

    题目传送门 vjudge的快速通道 bzoj的快速通道 题目大意 问在一个凸多边形内找一个点,连接这个点和所有顶点,使得与0号顶点,1号顶点构成的三角形是最小的概率. 假设点的位置是$(x, y)$, ...

  7. 【kuangbin专题】计算几何_半平面交

    1.poj3335 Rotating Scoreboard 传送:http://poj.org/problem?id=3335 题意:就是有个球场,球场的形状是个凸多边形,然后观众是坐在多边形的边上的 ...

  8. bzoj 3190 赛车 半平面交

    直接写的裸的半平面交,已经有点背不过模板了... 这题卡精度,要用long double ,esp设1e-20... #include<iostream> #include<cstd ...

  9. BZOJ 4445 [Scoi2015]小凸想跑步:半平面交

    传送门 题意 小凸晚上喜欢到操场跑步,今天他跑完两圈之后,他玩起了这样一个游戏. 操场是个凸 $ n $ 边形,$ n $ 个顶点 $ P_i $ 按照逆时针从 $ 0 $ 至 $ n-1 $ 编号. ...

随机推荐

  1. Inventory Update-freecodecamp算法题目

    Inventory Update 1.要求 依照一个存着新进货物的二维数组,更新存着现有库存(在 arr1 中)的二维数组. 如果货物已存在则更新数量 . 如果没有对应货物则把其加入到数组中,更新最新 ...

  2. [转]C++ explicit的作用

    explicit作用: 在C++中,explicit关键字用来修饰类的构造函数,被修饰的构造函数的类,不能发生相应的隐式类型转换,只能以显示的方式进行类型转换. explicit使用注意事项: * e ...

  3. FAT32中文版分析+补充(1)

    概述 起先所有的FAT文件系统都是为IBM PC机器而设计的,这说明了一个重要的问题:FAT文件系统在磁盘上的数据是用“小端”(Little Endian)结构存储的.我们使用4个8-bit的字节—— ...

  4. Mybatis基础进阶学习2

    Mybatis基础进阶学习2 1.测试基本结构 2.三个POJO package com.pojo; import java.io.Serializable; import java.util.Dat ...

  5. CCS选择器基础

    上周学习了HTML和css的一些基础,今天来夯实一下基础 选择器有: 1.标签选择器 :就是HTML 中的标签 如<p> <h1> <body>等 2.类选择器: ...

  6. redis学习1(nosql)

    一. 互联网时代背景下大机遇,为什么用nosql 1.单机MySQL的美好年代 在90年代,一个网站的访问量一般都不大,用单个数据库完全可以轻松应付.在那个时候,更多的都是静态网页,动态交互类型的网站 ...

  7. 笔记-restful

    笔记-restful 1.      restful简介 restful:representational state transfer,简称REST,描述了一个架构样式的网络系统. 值得注意的是RE ...

  8. Android面试收集录15 Android Bitmap压缩策略

    一.为什么Bitmap需要高效加载? 现在的高清大图,动辄就要好几M,而Android对单个应用所施加的内存限制,只有小几十M,如16M,这导致加载Bitmap的时候很容易出现内存溢出.如下异常信息, ...

  9. WPF开发实例——仿QQ登录界面

    原文:WPF开发实例--仿QQ登录界面 版权声明:本文为博主原创文章,如需转载请标明转载地址 http://blog.csdn.net/u013981858 https://blog.csdn.net ...

  10. Nodejs-异步操作

    1.阻塞 console.time('main');//代码计时器 //不断循环阻塞了代码的执行 for(var i=0;i<10000000;i++){ } console.timeEnd(' ...