题意:有n个任务,你的初始rating是m, 这n个任务有两个指标:完成这项任务所需的最低rating(a[i]),以及完成这项任务后rating的变化(可能为负)(b[i])。rating不能为负。F1:问是否存在一种任务完成顺序,始得所有任务都可以被完成,。F2:你可以任意选择一些任务去完成,问最多可以完成多少任务。

思路:

F1: 首先任务分成两部分:涨rating的和降rating的。对于涨rating的任务,直接按照a[i]从小到大排序即可。为什么呢?因为完成rating之后rating一定不会比原来小,即原来能完成的任务在完成其它任务后也一定能完成,如果可以全部完成,就开始考虑降rating的部分。我们考虑一下降rating的部分,我们考虑每一个任务执行之后rating的下界,然后按下界从大到小排序,即优先选择下界大的任务,下界越高对后面的影响越小。

代码:

#include <bits/stdc++.h>
#define INF 0x3f3f3f3f
using namespace std;
const int maxn = 110;
struct node {
int x, y;
};
vector<node> a, b;
bool cmp1(node t1, node t2) {
return t1.x < t2.x;
}
bool cmp2(node t1, node t2) {
return (max(t1.x, -t1.y) + t1.y) > (max(t2.x, -t2.y) + t2.y);
}
int main() {
int n, m, cnt1 = 0, cnt2 = 0;
scanf("%d%d", &n, &m);
int sum = 0;
node tmp;
for (int i = 1; i <= n; i++) {
scanf("%d%d", &tmp.x, &tmp.y);
if(tmp.y >= 0) a.push_back(tmp);
else b.push_back(tmp);
}
sort(a.begin(), a.end(), cmp1);
sort(b.begin(), b.end(), cmp2);
int ans = 0;
for (int i = 0; i < a.size(); i++) {
if(m < a[i].x) ans = -1;
m += a[i].y;
}
for (int i = 0; i < b.size(); i++) {
if(m < b[i].x) ans = -1;
m += b[i].y;
}
if(ans == -1) printf("NO\n");
else printf("YES\n");
}

F2:很明显这是一个背包DP,但是直接DP是O(n * n * m)的,因为每一个任务的选择会影响后面的任务。这样DP会超时。通过F1的结论我们得知,如果我们把降rating的部分按照下界排序,优先选择上界高的任务,这样我们DP转移时只需枚举当前任务选择还是不选择就行了,因为这种决策是最优的,所以不需再考虑之前完成的任务的影响,这样O(n * m)的复杂度便可完成DP过程。

代码:

#include <bits/stdc++.h>
#define pii pair<int, int>
using namespace std;
const int maxn = 600010;
int dp[110][maxn];
bool cmp(pii t1, pii t2) {
return (t1.first + t1.second) > (t2.first + t2.second);
}
vector<pii> a, b;
int main() {
int n, m;
scanf("%d%d", &n, &m);
pii tmp;
for (int i = 1; i <= n; i++) {
scanf("%d%d", &tmp.first, &tmp.second);
if(tmp.second >= 0) a.push_back(tmp);
else b.push_back(tmp);
}
sort(a.begin(), a.end());
sort(b.begin(), b.end(), cmp);
int mx = m, tot = 0;
for (int i = 0; i < a.size(); i++) {
if(a[i].first <= mx) {
mx += a[i].second;
tot++;
}
}
int ans = 0;
dp[0][mx] = tot;
for (int i = 0; i < b.size(); i++) {
for (int j = 0; j <= mx; j++) {
if(j >= b[i].first && j + b[i].second >= 0) {
dp[i + 1][j + b[i].second] = max(dp[i + 1][j + b[i].second], dp[i][j] + 1);
}
dp[i + 1][j] = max(dp[i + 1][j], dp[i][j]);
}
}
for (int i = 0; i <= mx; i++) {
ans = max(ans, dp[b.size()][i]);
}
printf("%d\n", ans);
}

  

Codeforces 1203F (贪心, DP)的更多相关文章

  1. 【BZOJ-3174】拯救小矮人 贪心 + DP

    3174: [Tjoi2013]拯救小矮人 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 686  Solved: 357[Submit][Status ...

  2. BZOJ_3174_[Tjoi2013]拯救小矮人_贪心+DP

    BZOJ_3174_[Tjoi2013]拯救小矮人_贪心+DP Description 一群小矮人掉进了一个很深的陷阱里,由于太矮爬不上来,于是他们决定搭一个人梯.即:一个小矮人站在另一小矮人的 肩膀 ...

  3. 洛谷P4823 拯救小矮人 [TJOI2013] 贪心+dp

    正解:贪心+dp 解题报告: 传送门! 我以前好像碰到过这题的说,,,有可能是做过类似的题qwq? 首先考虑这种显然是dp?就f[i][j]:决策到了地i个人,跑了j个的最大高度,不断更新j的上限就得 ...

  4. 【bzoj5073】[Lydsy1710月赛]小A的咒语 后缀数组+倍增RMQ+贪心+dp

    题目描述 给出 $A$ 串和 $B$ 串,从 $A$ 串中选出至多 $x$ 个互不重合的段,使得它们按照原顺序拼接后能够得到 $B$ 串.求是否可行.多组数据. $T\le 10$ ,$|A|,|B| ...

  5. 【bzoj3174】[Tjoi2013]拯救小矮人 贪心+dp

    题目描述 一群小矮人掉进了一个很深的陷阱里,由于太矮爬不上来,于是他们决定搭一个人梯.即:一个小矮人站在另一小矮人的 肩膀上,知道最顶端的小矮人伸直胳膊可以碰到陷阱口.对于每一个小矮人,我们知道他从脚 ...

  6. hdu 1257 最少拦截系统【贪心 || DP——LIS】

    链接: http://acm.hdu.edu.cn/showproblem.php?pid=1257 http://acm.hust.edu.cn/vjudge/contest/view.action ...

  7. 贪心+DP【洛谷P4823】 [TJOI2013]拯救小矮人

    P4823 [TJOI2013]拯救小矮人 题目描述 一群小矮人掉进了一个很深的陷阱里,由于太矮爬不上来,于是他们决定搭一个人梯.即:一个小矮人站在另一小矮人的 肩膀上,知道最顶端的小矮人伸直胳膊可以 ...

  8. 贪心+dp

    贪心+dp 好多题都是这个思想, 可以说是非常重要了 思想一: 在不确定序列无法dp的情况下, 我们不妨先假设序列已经选定, 而利用贪心使序列达到最优解, 从而先进行贪心排序, 在进行dp选出序列 思 ...

  9. 【题解】CF1056F Write the Contest(三分+贪心+DP)

    [题解]CF1056F Write the Contest(三分+贪心+DP) 最优化问题的三个解决方法都套在一个题里了,真牛逼 最优解应该是怎样的,一定存在一种最优解是先完成了耗时长的任务再干别的( ...

随机推荐

  1. condition简单示例

    在concurrent包中提供了condition接口,通过该接口可唤醒指定的某个线程,而不是采用随机唤醒的形式. import java.util.concurrent.locks.Conditio ...

  2. html5 固定边栏滚动特效

    <script src="https://code.jquery.com/jquery.js"></script> //引入jquery <scrip ...

  3. create-react-app按需引入antd-mobile

    1.引入 react-app-rewired 并修改 package.json 里的启动配置: npm i react-app-rewired@2.0.2-next.0 // 需要安装低版本 否则np ...

  4. pandas模块之读取文件

    首先我们来看一个文件 1 男 北京 刘一 我笑 #跳过此行,序号1 2 女 上海 刘珊 你笑 3 男 杭州 刘五 他笑 #跳过此行,序号四 4 女 重庆 刘六 不笑了 下面来分析内容,并使用参数 1 ...

  5. Autodesk Maya 2019 for Mac(三维动画软件)最新功能介绍

    Autodesk Maya是美国Autodesk公司出品的世界顶级的三维动画软件,应用对象是专业的影视广告,角色动画,电影特技等.Maya功能完善,工作灵活,易学易用,制作效率极高,渲染真实感极强,是 ...

  6. npm和gem

    https://blog.csdn.net/u011099640/article/details/53083845

  7. Servlet 第一天

    package com.servlet; import java.io.IOException; import javax.servlet.Servlet; import javax.servlet. ...

  8. VMware安装MAC OS

    测试环境 安装环境:win10 .VMware Workstation Pro14 镜像:OS X 10.11.5(由于太大,就没有上传网盘,网上也有很多资源) 安装准备 安装前先把关于VMware的 ...

  9. this.$nextTick 与window.setTimeout

    两个都可以设置运行先后.前者,方式: this.$nextTick(() => { this.$refs.orgAddOrUpdate.init(row, isAdd) }) 其中orgAddO ...

  10. nodejs环境安装

    centos7安装nodejs环境 原文地址: https://www.cnblogs.com/MY0101/p/6625344.html 下载地址: https://nodejs.org/dist/ ...