题意:给你一个长度为n序列,和一个数m,问这个序列有多少个子序列,满足这个子序列的所有子序列的和是m的倍数?答案对1e9 + 7取模,n, m范围到5e3;

思路:容易发现,如果一个子序列的长度是n,子序列的所有的元素的和是sum的话,它的所有的子序列的和是sum * 2 ^ (n - 1),那么我们发现,一个序列的所有子序列的和与子序列的和以及子序列的长度有关,我们容易想O(n^2 * m)的DP。设dp[i][j][k]为前i个数,长度为j的子序列中子序列的和是k的元素的个数。每扫到一个新的元素,有两种决策:1:不加这个数dp[i + 1][j][k] += dp[i][j][k];2:加这个数dp[i + 1][j +1][k + a[i + 1] += dp[i][j][k]。每次转移O(n * m),总复杂度O(n ^ 2 * m).

我们现在考虑优化一下dp。我们发现一个序列的子序和与2 ^ (n - 1)与sum有关,若要子序和是m的倍数,分两种情况:1:2不是m的因子,那么容易发现2  ^ (n - 1)不会影响子序和是否是m的倍数。2:2是m的因子,但是m最大范围是5e3,所以最大有2 ^ 12这个因子,而所以当n大于12的时候又变成了情况1.所以,实际上dp的第二维的大小只有十几,复杂度降为了O(n * logn * m),但是这样的复杂度仍然不够优秀,我们考虑继续优化。我们可以发现,dp[i][j][k]中,随着j的增加,k那一维的模数也在不断减少,模数是m + m / 2 + m / 4 ...这个复杂度是O(m)的,所以我们逐步优化之后,复杂度降低到了O(n * m)。

代码:

#include <bits/stdc++.h>
#define LL long long
using namespace std;
const int maxn = 5010;
const LL mod = 1000000007;
int a[maxn], dp[2][15][maxn], p[20];
void update(int &x, int y) {
x = ((long long)x + y) % mod;
}
int main() {
int n, m;
int ans = 0;
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i++) {
scanf("%d", &a[i]);
}
int cnt = 0;
int tmp = m;
while(tmp % 2 == 0) {
tmp /= 2;
cnt++;
}
dp[0][0][0] = 1;
for (int i = 0; i < n; i++) {
memset(dp[(i + 1) & 1], 0, sizeof(dp[(i + 1) & 1]));
for (int j = 0; j <= cnt + 1; j++) {
memset(dp[(i + 1) & 1][j], 0, sizeof(int) * (m / (1 << max(0, j - 1))));
}
for (int j = 0; j <= cnt; j++) {
int mm = m / (1 << max(0, j - 1)), mmm = m / (1 << max(0, j));
for (int k = 0; k < mm; k++) {
if(!dp[i & 1][j][k]) continue;
update(dp[(i + 1) & 1][j][k], dp[i & 1][j][k]);
update(dp[(i + 1) & 1][j + 1][(k + a[i + 1]) % mmm], dp[i & 1][j][k]);
}
}
for (int j = 0; j < tmp; j++) {
if(!dp[i & 1][cnt + 1][j]) continue;
update(dp[(i + 1) & 1][cnt + 1][j], dp[i & 1][cnt + 1][j]);
update(dp[(i + 1) & 1][cnt + 1][(j + a[i + 1]) % tmp], dp[i & 1][cnt + 1][j]);
}
}
for (int i = 1; i <= cnt + 1; i++) {
update(ans, dp[n & 1][i][0]);
}
printf("%d\n", ans);
return 0;
}

  

Comet OJ - contest #3 C DP的更多相关文章

  1. Comet OJ - Contest #8

    Comet OJ - Contest #8 传送门 A.杀手皇后 签到. Code #include <bits/stdc++.h> using namespace std; typede ...

  2. Comet OJ - Contest #2 简要题解

    Comet OJ - Contest #2 简要题解 cometoj A 模拟,复杂度是对数级的. code B 易知\(p\in[l,r]\),且最终的利润关于\(p\)的表达式为\(\frac{( ...

  3. Comet OJ - Contest #2简要题解

    Comet OJ - Contest #2简要题解 前言: 我没有小裙子,我太菜了. A 因自过去而至的残响起舞 https://www.cometoj.com/contest/37/problem/ ...

  4. Comet OJ - Contest #4--前缀和

    原题:Comet OJ - Contest #4-B https://www.cometoj.com/contest/39/problem/B?problem_id=1577传送门 一开始就想着暴力打 ...

  5. Comet OJ - Contest #11 题解&赛后总结

    Solution of Comet OJ - Contest #11 A.eon -Problem designed by Starria- 在模 10 意义下,答案变为最大数的最低位(即原数数位的最 ...

  6. Comet OJ - Contest #13-C2

    Comet OJ - Contest #13-C2 C2-佛御石之钵 -不碎的意志-」(困难版) 又是一道并查集.最近做过的并查集的题貌似蛮多的. 思路 首先考虑,每次处理矩形只考虑从0变成1的点.这 ...

  7. Comet OJ - Contest #13 「火鼠的皮衣 -不焦躁的内心-」

    来源:Comet OJ - Contest #13 芝士相关: 复平面在信息学奥赛中的应用[雾 其实是道 sb 题??? 发现原式貌似十分可二项式定理,然后发现确实如此 我们把 \(a^i\) 替换成 ...

  8. Comet OJ - Contest #13 「佛御石之钵 -不碎的意志-」(hard)

    来源:Comet OJ - Contest #13 一眼并查集,然后发现这题 tmd 要卡常数的说卧槽... 发现这里又要用并查集跳过访问点,又要用并查集维护联通块,于是开俩并查集分别维护就好了 一开 ...

  9. Comet OJ - Contest #5

    Comet OJ - Contest #5 总有一天,我会拿掉给\(dyj\)的小裙子的. A 显然 \(ans = min(cnt_1/3,cnt_4/2,cnt5)\) B 我们可以感性理解一下, ...

随机推荐

  1. 工作中SQL语句的优化

    在我们的工作中,数据是很多的,这是我常见问题遇到的问题做了简短总结. 1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 2.应尽量避免在 w ...

  2. linux起源及centos安装

    第1章 Linux介绍 1.1 什么是操作系统 是一个人与计算机硬件的中介 Linux:内核+shell+扩展软件  操作系统,英文名称Operating System,简称OS,是计算机系统中必不可 ...

  3. [js测试]JavaScript Web Quiz By davidshariff

    Question1 var foo = function foo() { console.log(foo === foo); }; foo(); 输出是"true",因为foo就指 ...

  4. elasticsearch 6.x 安装search guard

    前言 es之前版本一直无用户验证功能,不过官方有提供一x-pack,但是问题是付费.在es的6.3.2版本中,已经集成了x-pack,虽然es团队已经对x-pack开源,但是在该版本中如果需要使用到安 ...

  5. Hibernaate 详解

    hibernate.cfg.xml 连接数据库: connection.username 数据库的名称.这是我自己的是luwei connection.password 数据库的密码 luwei co ...

  6. 【Flutter学习】可滚动组件之滚动监听及控制

    一,概述 ScrollController可以用来控制可滚动widget的滚动位置 二,ScrollController 构造函数 ScrollController({ double initialS ...

  7. Python基础教程(007)--Python的优缺点

    前言 了解Python的优点和缺点 知识点 优点 简单易学 免费,开源 面相对象 丰富的库 可扩展性 缺点 运行速度慢 国内市场较小 中文资料匮乏 总结: 明白Python的优点和缺点

  8. Effective Objective-C 2.0

    Effective Objective-C 2.0:编写高质量iOS与OS X代码的52个有效方法 作者:Matt Galloway(英) 译者:爱飞翔 出版社:机械工业出版社 出版年:2014-01 ...

  9. share memory cache across multi web application

    Single instance of a MemoryCache across multiple application pools on the same server [duplicate] Yo ...

  10. (55)C# windows 消息

    窗体捕获消息 namespace WindowsFormsApp1 { public partial class Form1 : Form { public Form1() { InitializeC ...