矩阵的 Frobenius 范数及其求偏导法则
cr:http://blog.csdn.net/txwh0820/article/details/46392293
一、矩阵的迹求导法则
1. 复杂矩阵问题求导方法:可以从小到大,从scalar到vector再到matrix
2. x is a column vector, A is a matrix
d(A∗x)/dx=A
d(xT∗A)/dxT=A
d(xT∗A)/dx=AT
d(xT∗A∗x)/dx=xT(AT+A)
3. Practice:
4. 矩阵求导计算法则
求导公式(撇号为转置):
Y = A * X –> DY/DX = A’
Y = X * A –> DY/DX = A
Y = A’ * X * B –> DY/DX = A * B’
Y = A’ * X’ * B –> DY/DX = B * A’
乘积的导数:
d(f*g)/dx=(df’/dx)g+(dg/dx)f’
一些结论:
- 矩阵Y对标量x求导:
相当于每个元素求导数后转置一下,注意M×N矩阵求导后变成N×M了
Y = [y(ij)]–> dY/dx = [dy(ji)/dx] - 标量y对列向量X求导:
注意与上面不同,这次括号内是求偏导,不转置,对N×1向量求导后还是N×1向量
y = f(x1,x2,..,xn) –> dy/dX= (Dy/Dx1,Dy/Dx2,..,Dy/Dxn)’ - 行向量Y’对列向量X求导:
注意1×M向量对N×1向量求导后是N×M矩阵。
将Y的每一列对X求偏导,将各列构成一个矩阵。
重要结论:
dX’/dX =I
d(AX)’/dX =A’ - 列向量Y对行向量X’求导:
转化为行向量Y’对列向量X的导数,然后转置。
注意M×1向量对1×N向量求导结果为M×N矩阵。
dY/dX’ =(dY’/dX)’ - 向量积对列向量X求导运算法则:
注意与标量求导有点不同。
d(UV’)/dX =(dU/dX)V’ + U(dV’/dX)
d(U’V)/dX =(dU’/dX)V + (dV’/dX)U’
重要结论:
d(X’A)/dX =(dX’/dX)A + (dA/dX)X’ = IA + 0X’ = A
d(AX)/dX’ =(d(X’A’)/dX)’ = (A’)’ = A
d(X’AX)/dX =(dX’/dX)AX + (d(AX)’/dX)X = AX + A’X - 矩阵Y对列向量X求导:
将Y对X的每一个分量求偏导,构成一个超向量。
注意该向量的每一个元素都是一个矩阵。 - 矩阵积对列向量求导法则:
d(uV)/dX =(du/dX)V + u(dV/dX)
d(UV)/dX =(dU/dX)V + U(dV/dX)
重要结论:
d(X’A)/dX =(dX’/dX)A + X’(dA/dX) = IA + X’0 = A - 标量y对矩阵X的导数:
类似标量y对列向量X的导数,
把y对每个X的元素求偏导,不用转置。
dy/dX = [Dy/Dx(ij) ]
重要结论:
y = U’XV= ΣΣu(i)x(ij)v(j) 于是 dy/dX = [u(i)v(j)] =UV’
y = U’X’XU 则dy/dX = 2XUU’
y =(XU-V)’(XU-V) 则 dy/dX = d(U’X’XU - 2V’XU + V’V)/dX = 2XUU’ - 2VU’ +0 = 2(XU-V)U’ - 矩阵Y对矩阵X的导数:
将Y的每个元素对X求导,然后排在一起形成超级矩阵。
10.乘积的导数
d(f*g)/dx=(df’/dx)g+(dg/dx)f’
结论
d(x’Ax)=(d(x”)/dx)Ax+(d(Ax)/dx)(x”)=Ax+A’x (注意:”是表示两次转置)
矩阵求导 属于 矩阵计算,应该查找 Matrix Calculus 的文献:
http://www.psi.toronto.edu/matrix/intro.html#Intro
http://www.psi.toronto.edu/matrix/calculus.html
http://www.stanford.edu/~dattorro/matrixcalc.pdf
http://www.colorado.edu/engineering/CAS/courses.d/IFEM.d/IFEM.AppD.d/IFEM.AppD.pdf
http://www4.ncsu.edu/~pfackler/MatCalc.pdf
http://center.uvt.nl/staff/magnus/wip12.pdf
矩阵的 Frobenius 范数及其求偏导法则的更多相关文章
- 矩阵的frobenius范数及其求偏导法则
例子: http://www.mathchina.net/dvbbs/dispbbs.asp?boardid=4&Id=3673
- 矩阵的f范数及其求偏导法则
转载自: http://blog.csdn.net/txwh0820/article/details/46392293 矩阵的迹求导法则 1. 复杂矩阵问题求导方法:可以从小到大,从scalar到 ...
- Maths | 二次型求偏导
- 用tensorflow求偏导
# coding:utf-8 from __future__ import absolute_import from __future__ import unicode_literals from _ ...
- MathType二次偏导怎么表示
求导以及求偏导运算在数学中是很重要的一个部分,尤其是在高等数学中,基本都由函数的导数与偏导组成,很多公式定理也是关于这方面的,如果少了这一部分,数学将会黯然失色.因此在文档中涉及到这些内容时,必然会少 ...
- Frobenius norm(Frobenius 范数)
Frobenius 范数,简称F-范数,是一种矩阵范数,记为||·||F. 矩阵A的Frobenius范数定义为矩阵A各项元素的绝对值平方的总和,即 可用于 利用低秩矩阵来近似单一数据矩阵. 用数学表 ...
- C++实现矩阵的相加/相称/转置/求鞍点
1.矩阵相加 两个同型矩阵做加法,就是对应的元素相加. #include<iostream> using namespace std; int main(){ int a[3][3]={{ ...
- 螺旋矩阵O(1)根据坐标求值
传送门 洛谷2239 •题意 从矩阵的左上角(第11行第11列)出发,初始时向右移动: 如果前方是未曾经过的格子,则继续前进,否则右转: 重复上述操作直至经过矩阵中所有格子. 根据经过顺序,在格子中依 ...
- 关于matlab矩阵卷积conv2和傅里叶变换求卷积ifft2的关系
先定义两个矩阵 a = [1 2 3 5 ; 4 7 9 5;1 4 6 7;5 4 3 7;8 7 5 1] %a矩阵取5*4 b = [1 5 4; 3 6 8; 1 5 7] %b矩阵如多数 ...
随机推荐
- java NIO 详解
Java NIO(New IO)是从Java 1.4版本开始引入的一个新的IO API,可以替代标准的Java IO API.本系列教程将有助于你学习和理解Java NIO. Java NIO提供了与 ...
- Guacamole 远程桌面
本文将Apache的guacamole服务的部署和应用,http://guacamole.apache.org/doc/gug/ 该链接下有全部相关知识的英文文档,如果水平ok,可以去这里仔细查看. ...
- Spring高频率面试题
1.Spring怎样定义类的作用域 通过bean 定义中的scope属性来定义. 2.Spring支持的几种bean的作用域 支持以下五种bean的作用域: singleton : bean在每个Sp ...
- MongoDB服务的安装与删除
服务的安装: 在MongoDB的目录下创建两个文件夹 data和logs, 在通过cmd进入bin目录下,执行命令: mongod --dbpath "C:\Program Files\Mo ...
- iframes
iframes提供了一个简单的方式把一个网站的内容嵌入到另一个网站中.但我们需要慎重的使用iframe.iframe的创建比其它包括scripts和css的 DOM 元素的创建慢了 1-2 个数量级. ...
- Mybatis配置——自动使用驼峰命名 属性映射字段(默认为false)
开发一个新项目,用的springboot,相关配置不太熟悉,导致一些配置没配,到具体开发时问题就暴露出来了,记录第一个配置问题----Mybatis配置-自动使用驼峰命名 属性(userId)映射字段 ...
- 【Flutter学习】事件处理与通知之通知(Notification)
一,概述 Notification是Flutter中一个重要的机制,在Widget树中,每一个节点都可以分发通知,通知会沿着当前节点(context)向上传递,所有父节点都可以通过Notificati ...
- element-uI隐藏表格头部
1.表格结构定义 :show-header="hiddenTableHeader" 2. data里面定义 hiddenTableHeader:false,
- Navicat12破解教程
Navicat12破解教程 1.下载Navicat12 并安装,打开Navicat12 点击14天试用,关闭软件 2.下载注册机: 个人百度网盘(版本更新可能不及时):https://pan.baid ...
- css 布局(圣杯、双飞翼)
一. 圣杯布局. 左右固宽,中间自适应 三列布局,中间宽度自适应,两边定宽: 中间部分要在浏览器中优先展示渲染: 具体步骤:1.设置基本样式2.圣杯布局是一种相对布局,首先设置父元素container ...