矩阵的 Frobenius 范数及其求偏导法则
cr:http://blog.csdn.net/txwh0820/article/details/46392293
一、矩阵的迹求导法则
1. 复杂矩阵问题求导方法:可以从小到大,从scalar到vector再到matrix
2. x is a column vector, A is a matrix
d(A∗x)/dx=A
d(xT∗A)/dxT=A
d(xT∗A)/dx=AT
d(xT∗A∗x)/dx=xT(AT+A)
3. Practice:
4. 矩阵求导计算法则
求导公式(撇号为转置):
Y = A * X –> DY/DX = A’
Y = X * A –> DY/DX = A
Y = A’ * X * B –> DY/DX = A * B’
Y = A’ * X’ * B –> DY/DX = B * A’
乘积的导数:
d(f*g)/dx=(df’/dx)g+(dg/dx)f’
一些结论:
- 矩阵Y对标量x求导:
相当于每个元素求导数后转置一下,注意M×N矩阵求导后变成N×M了
Y = [y(ij)]–> dY/dx = [dy(ji)/dx] - 标量y对列向量X求导:
注意与上面不同,这次括号内是求偏导,不转置,对N×1向量求导后还是N×1向量
y = f(x1,x2,..,xn) –> dy/dX= (Dy/Dx1,Dy/Dx2,..,Dy/Dxn)’ - 行向量Y’对列向量X求导:
注意1×M向量对N×1向量求导后是N×M矩阵。
将Y的每一列对X求偏导,将各列构成一个矩阵。
重要结论:
dX’/dX =I
d(AX)’/dX =A’ - 列向量Y对行向量X’求导:
转化为行向量Y’对列向量X的导数,然后转置。
注意M×1向量对1×N向量求导结果为M×N矩阵。
dY/dX’ =(dY’/dX)’ - 向量积对列向量X求导运算法则:
注意与标量求导有点不同。
d(UV’)/dX =(dU/dX)V’ + U(dV’/dX)
d(U’V)/dX =(dU’/dX)V + (dV’/dX)U’
重要结论:
d(X’A)/dX =(dX’/dX)A + (dA/dX)X’ = IA + 0X’ = A
d(AX)/dX’ =(d(X’A’)/dX)’ = (A’)’ = A
d(X’AX)/dX =(dX’/dX)AX + (d(AX)’/dX)X = AX + A’X - 矩阵Y对列向量X求导:
将Y对X的每一个分量求偏导,构成一个超向量。
注意该向量的每一个元素都是一个矩阵。 - 矩阵积对列向量求导法则:
d(uV)/dX =(du/dX)V + u(dV/dX)
d(UV)/dX =(dU/dX)V + U(dV/dX)
重要结论:
d(X’A)/dX =(dX’/dX)A + X’(dA/dX) = IA + X’0 = A - 标量y对矩阵X的导数:
类似标量y对列向量X的导数,
把y对每个X的元素求偏导,不用转置。
dy/dX = [Dy/Dx(ij) ]
重要结论:
y = U’XV= ΣΣu(i)x(ij)v(j) 于是 dy/dX = [u(i)v(j)] =UV’
y = U’X’XU 则dy/dX = 2XUU’
y =(XU-V)’(XU-V) 则 dy/dX = d(U’X’XU - 2V’XU + V’V)/dX = 2XUU’ - 2VU’ +0 = 2(XU-V)U’ - 矩阵Y对矩阵X的导数:
将Y的每个元素对X求导,然后排在一起形成超级矩阵。
10.乘积的导数
d(f*g)/dx=(df’/dx)g+(dg/dx)f’
结论
d(x’Ax)=(d(x”)/dx)Ax+(d(Ax)/dx)(x”)=Ax+A’x (注意:”是表示两次转置)
矩阵求导 属于 矩阵计算,应该查找 Matrix Calculus 的文献:
http://www.psi.toronto.edu/matrix/intro.html#Intro
http://www.psi.toronto.edu/matrix/calculus.html
http://www.stanford.edu/~dattorro/matrixcalc.pdf
http://www.colorado.edu/engineering/CAS/courses.d/IFEM.d/IFEM.AppD.d/IFEM.AppD.pdf
http://www4.ncsu.edu/~pfackler/MatCalc.pdf
http://center.uvt.nl/staff/magnus/wip12.pdf
矩阵的 Frobenius 范数及其求偏导法则的更多相关文章
- 矩阵的frobenius范数及其求偏导法则
例子: http://www.mathchina.net/dvbbs/dispbbs.asp?boardid=4&Id=3673
- 矩阵的f范数及其求偏导法则
转载自: http://blog.csdn.net/txwh0820/article/details/46392293 矩阵的迹求导法则 1. 复杂矩阵问题求导方法:可以从小到大,从scalar到 ...
- Maths | 二次型求偏导
- 用tensorflow求偏导
# coding:utf-8 from __future__ import absolute_import from __future__ import unicode_literals from _ ...
- MathType二次偏导怎么表示
求导以及求偏导运算在数学中是很重要的一个部分,尤其是在高等数学中,基本都由函数的导数与偏导组成,很多公式定理也是关于这方面的,如果少了这一部分,数学将会黯然失色.因此在文档中涉及到这些内容时,必然会少 ...
- Frobenius norm(Frobenius 范数)
Frobenius 范数,简称F-范数,是一种矩阵范数,记为||·||F. 矩阵A的Frobenius范数定义为矩阵A各项元素的绝对值平方的总和,即 可用于 利用低秩矩阵来近似单一数据矩阵. 用数学表 ...
- C++实现矩阵的相加/相称/转置/求鞍点
1.矩阵相加 两个同型矩阵做加法,就是对应的元素相加. #include<iostream> using namespace std; int main(){ int a[3][3]={{ ...
- 螺旋矩阵O(1)根据坐标求值
传送门 洛谷2239 •题意 从矩阵的左上角(第11行第11列)出发,初始时向右移动: 如果前方是未曾经过的格子,则继续前进,否则右转: 重复上述操作直至经过矩阵中所有格子. 根据经过顺序,在格子中依 ...
- 关于matlab矩阵卷积conv2和傅里叶变换求卷积ifft2的关系
先定义两个矩阵 a = [1 2 3 5 ; 4 7 9 5;1 4 6 7;5 4 3 7;8 7 5 1] %a矩阵取5*4 b = [1 5 4; 3 6 8; 1 5 7] %b矩阵如多数 ...
随机推荐
- 什么是restful风格?
文章参考 RESTful API 设计指南--阮一峰 概念 一种软件架构风格.设计风格,而不是标准,只是提供了一组设计原则和约束条件.它主要用于客户端和服务器交互类的软件.基于这个风格设计的软件可以更 ...
- 针对类别的5中softmax_cross_entropy loss计算
# ---------------------------- #! Copyright(C) 2019 # All right reserved. # 文件名称:xxx.py # 摘 要:五种方式实现 ...
- Codeforces 364D 随机算法
题意:给你一个序列,定义ghd为一个序列中任意n / 2个数的gcd中最大的那个,现在问这个序列的ghd为多少. 思路:居然是论文题...来自2014年国家集训队论文<随机化算法在信息学竞赛中的 ...
- package.json和package-lock.json的区别
参考:https://blog.csdn.net/c2311156c/article/details/80320046 package.json: 主要用来定义项目中需要依赖的包 package-lo ...
- vue-router中的router-link的active-class
vue-router中的router-link的active-class 在vue-router中要使用选中样式的方法有两种: 1.直接在路由js文件中配置linkActiveClass 2.在r ...
- java 双重校验性volatile
A a = new A(); 上述可拆分为三个步骤: -1.分配地址 -2.初始化对象 -3.将 变量a 指向这个地址 在准时制生产方式(Just In Time简称JIT)时,可能发生指令重排: 在 ...
- SSD算法的实现
本文目的:介绍一个超赞的项目--用Keras来实现SSD算法. 本文目录: 0 前言 1 如何训练SSD模型 2 如何评估SSD模型 3 如何微调SSD模型 4 其他注意点 0 前言 我在学习完SSD ...
- oracle 数据库 锁
首先你要知道表锁住了是不是正常锁?因为任何DML语句都会对表加锁. 你要先查一下是那个会话那个sql锁住了表,有可能这是正常业务需求,不建议随便KILL session,如果这个锁表是正常业务你把se ...
- Vim显示/不显示行号
:set number :set nonumber
- Ceph的正确玩法之Ceph纠删码理论与实践
http://blog.itpub.net/31545808/viewspace-2637083/ 注意空格,有的命令少空格 随着云计算业务的快速发展,国内外云计算企业的专利之争也愈发激烈.在云计算这 ...