Link

有两种做法:

第一种是\(O(nlog\ n)\)的。

我们预处理两个数组:

\(pre_i\)表示\(p\)中\(i\)前面的那个数是\(pre_i\)。

\(lst_i\)表示\(a\)中\(a_i\)前一个\(pre_{a_i}\)的位置。(代码中是\(f_0\))

那么每个数往前跳几次\(lst\),也就会对应排列\(p\)中的一段连续子串。

然后处理往前跳\(lst\)的倍增数组。

我们知道,\(p\)是一个循环排列,所以对于每个数,以这个数结束的最短的是\(p\)的循环移位的\(a\)的子序列,就是从这个数往前跳\(n-1\)次\(lst\)得到的子序列。

所以我们处理出每个点往前跳\(n-1\)次\(lst\)得到的位置\(edp\)。

对于一次询问\(l,r\),如果\(l,r\)中存在子序列为\(p\)的循环移位,那么就会满足\(\exist i\in[l,r],edp_i\in[l,r]\)。

所以我们用\(st\)表维护区间最小值即可。

#include<bits/stdc++.h>
using namespace std;
const int N=200007;
int p[N],a[N],f[21][N],pre[N],lst[N],Log[N],st[21][N];
int max(int a,int b){return a>b? a:b;}
int read(){int x;scanf("%d",&x);return x;}
int get(int l,int r){int k=Log[r-l+1];return max(st[k][l],st[k][r-(1<<k)+1]);}
int main()
{
int n=read(),m=read(),q=read(),i,j,l,r;
for(i=1;i<=n;++i) p[i]=read();
p[0]=p[n];
for(i=1;i<=n;++i) pre[p[i]]=p[i-1];
for(i=1;i<=m;++i) a[i]=read();
for(i=1;i<=m;++i) f[0][i]=lst[pre[a[i]]],lst[a[i]]=i;
for(i=2;i<=n||i<=m;++i) Log[i]=Log[i>>1]+1;
for(i=1;i<=Log[n];++i) for(j=1;j<=m;++j) f[i][j]=f[i-1][f[i-1][j]];
for(i=1;i<=m;++i) for(st[j=0][i]=i;j<=Log[n-1];++j) if((n-1)&(1<<j)) st[0][i]=f[j][st[0][i]];
for(i=1;i<=Log[m];++i) for(j=1;j+(1<<i)-1<=m;++j) st[i][j]=max(st[i-1][j],st[i-1][j+(1<<i-1)]);
while(q--) l=read(),r=read(),putchar(get(l,r)>=l? '1':'0');
}

第二种是\(O(n)\)的。

我们处理两个数组:

\(ppre_i\)表示\(p\)中\(i\)前面的那个数是\(ppre_i\)。

\(apre_i\)表示\(a\)中前一个\(a_i\)的位置。

然后从前往后扫\(a\)数组,把\(a_i\)前面所有未连边的\(ppre_{a_i}\)的位置向\(i\)连边,并且打上标记,下次不再连边。

那么我们知道每个点最多只有一个入边。没有入边的,我们新建一个\(0\)到这个点的边。

总的,我们会建出一棵树。

\(a\)数组中\(a_i\)向前跳一次\(lst\)(上面那个做法的跳)也就是跳一次父亲。

所以上面做法的跳\(n-1\)次就变成了\(n-1\)级祖先。

考虑dfs的过程,dfs到某个点经过的点(也就是dfs的栈)存的都是根到当前节点的路径。

所以每个节点dfs到时(进栈)把当前深度的节点(\(b\)数组)记为自己,因此\(n-1\)级祖先就是\(b[dep[u]-(n-1)]\)。

#include<bits/stdc++.h>
#define pb push_back
using namespace std;
const int N=200007;
int n,m,q,p[N],a[N],apre[N],lst[N],ppre[N],fa[N],dep[N],w[N],b[N];
vector<int>G[N];
int max(int a,int b){return a>b? a:b;}
int min(int a,int b){return a<b? a:b;}
int read(){int x;scanf("%d",&x);return x;}
void dfs(int u)
{
int i,v;
b[dep[u]]=u,w[u]=dep[u]>=n? b[dep[u]-(n-1)]:m+1;
for(i=G[u].size()-1;~i;--i) v=G[u][i],dep[v]=dep[u]+1,dfs(v);
}
int main()
{
n=read(),m=read(),q=read();int i,j;
for(i=1;i<=n;++i) p[i]=read();
p[0]=p[n];
for(i=1;i<=n;++i) ppre[p[i]]=p[i-1];
for(i=1;i<=m;++i)
{
a[i]=read(),apre[i]=lst[a[i]],lst[a[i]]=i;
for(j=lst[ppre[a[i]]];j&&!fa[j];j=apre[j]) fa[j]=i;
}
for(i=1;i<=m;++i) fa[i]? G[fa[i]].pb(i):G[0].pb(i);
dfs(0);
for(i=m-1;i;--i) w[i]=min(w[i+1],w[i]);
while(q--) i=read(),j=read(),putchar(48+(w[i]<=j));
}

CF1142B Lynyrd Skynyrd的更多相关文章

  1. 【题解】CF1142B Lynyrd Skynyrd(倍增)

    [题解]CF1142B Lynyrd Skynyrd(倍增) 调了一个小时原来是读入读反了.... 求子段是否存在一个排列的子序列的套路是把给定排列看做置换,然后让给定的序列乘上这个置换,问题就转化为 ...

  2. 【CF1142B】Lynyrd Skynyrd

    [CF1142B]Lynyrd Skynyrd 题面 洛谷 题解 假设区间\([l,r]\)内有一个循环位移,那么这个循环位移一定有一个最后的点,而这个点在循环位移中再往前移\(n-1\)个位置也一定 ...

  3. CF1142E/1143B Lynyrd Skynyrd

    CF1142E/1143B Lynyrd Skynyrd 开始读错题了,以为是连续的一段,敲完后才发现是 \(subsequence\) ... 考虑对于 \(a\) 中的每个 \(a_i\) 找到它 ...

  4. 「CF1142B」Lynyrd Skynyrd

    传送门 Luogu 解题思路 发现一个性质: 对于排列的任何一个循环位移,排列中的同一个数的前驱肯定是不变的. 而且,如果一个排列的循环位移是某一个区间的子序列,那么这个循环位移的结尾的 \(n-1\ ...

  5. 『题解』Codeforces1142B Lynyrd Skynyrd

    更好的阅读体验 Portal Portal1: Codeforces Portal2: Luogu Description Recently Lynyrd and Skynyrd went to a ...

  6. B. Lynyrd Skynyrd

    传送门: 题意:给出 n,m,q 然后给出模板串,从1-n数字只出现一次,然后给出长度为m的要询问的串. q组询问:每组询问输出 ‘1’或者‘0’ 每组询问 一对x,y    问在x到y中有没有模板串 ...

  7. Codeforces 1142B Lynyrd Skynyrd

    ---恢复内容开始--- 题意:给你一个排列p和数组a,有t组询问,每次询问一个区间的子序列中是否有p的一个循环排列. 思路:以p = [3, 1, 2]举例, 我们扫描数组b,假设当前数字是1,那么 ...

  8. Codeforces Round #549 (Div. 1)

    今天试图用typora写题解 真开心 参考 你会发现有很多都是参考的..zblzbl Codeforces Round #549 (Div. 1) 最近脑子不行啦 需要cf来缓解一下 A. The B ...

  9. Codeforces Round #549 (Div. 2) 训练实录 (5/6)

    The Doors +0 找出输入的01数列里,0或者1先出完的的下标. Nirvana +3 输入n,求1到n的数字,哪个数逐位相乘的积最大,输出最大积. 思路是按位比较,从低到高,依次把小位换成全 ...

随机推荐

  1. JS大文件上传断点续传解决方案

    1 背景 用户本地有一份txt或者csv文件,无论是从业务数据库导出.还是其他途径获取,当需要使用蚂蚁的大数据分析工具进行数据加工.挖掘和共创应用的时候,首先要将本地文件上传至ODPS,普通的小文件通 ...

  2. Linux 简单打印日志(二)

    #include<stdio.h> #include<stdlib.h> #include<string.h> #include<time.h> //# ...

  3. BZOJ3875--骑士游戏(SPFA处理带后效性的动态规划)

    3875: [Ahoi2014]骑士游戏 Time Limit: 30 Sec  Memory Limit: 256 MBSubmit: 181  Solved: 91[Submit][Status] ...

  4. MySQ彻底删除与安装配置

    彻底删除 1.查看 MySQL 安装了哪些东西 rpm -qa |grep -i mysql 2.卸载 -.el7.x86_64 -.el7.x86_64 .noarch -.el7.x86_64 - ...

  5. Oracle提高SQL查询效率where语句条件的先后次序

    (1)选择最有效率的表名顺序(只在基于规则的优化器中有效): Oracle的解析器按照从右到左的顺序处理FROM子句中的表名,FROM子句中写在最后的表(基础表 driving table)将被最先处 ...

  6. Anaconda cheat sheet

    1 anaconda prompt 闪退的情况 在cmd中进入C:\ProgramData\Anaconda3\Scripts然后可以使用各种conda命令 2 anaconda 换源 # 方法参考 ...

  7. Feature Engineering and Feature Selection

    首先,弄清楚三个相似但是不同的任务: feature extraction and feature engineering: 将原始数据转换为特征,以适合建模. feature transformat ...

  8. 【nginx】 配置域名转发到相同地址不同端口下执行相应业务

    #doctor upstream doc { server 52.**.**.***:8090; } #patient upstream pat { server 52.**.**.***:8088; ...

  9. LeetCode 198. 打家劫舍(House Robber)LeetCode 213. 打家劫舍 II(House Robber II)

    打家劫舍 题目描述 你是一个专业的小偷,计划偷窃沿街的房屋.每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报 ...

  10. 全面解读php-流程控制

    一.PHP遍历数组的三种方式 示例: $arr = [1, 2, 3 4, 'five' => 5]; 1.for ()  for循环只能用于遍历纯索引数组!如果存在关联数组,count统计时会 ...