[LOJ161] 仙人掌计数
Statement
带标号仙人掌计数问题.
\(n< 131072\).
Solution
设\(x\)个点的仙人掌个数的生成函数为\(C(x)\)
对于与根相邻的块, 还是仙人掌, 生成函数为\(C(x)\)
包含根的环, 生成函数为\(\sum_{i>1}\frac{C(x)^i}{2}\)
组合起来:
\[
C(x) = x \exp{\frac{2C(x)-C(x)^2}{2-2C(x)}}
\]
设\(G(C(x)) = x\exp{\frac{2C(x)-C(x)^2}{2-2C(x)}}-C(x)\), 那么:
\[
\small{
\begin{aligned}
G'(C(x)) &= x\left(\exp{\frac{2C(x)-C(x)^2}{2-2C(x)}}\right)'-1 \\
&= x \exp\left(\frac{2C(x)-C(x)^2}{2-2C(x)}\right)\left(\frac{2C(x)-C(x)^2}{2-2C(x)}\right)' - 1 \\
&= x \exp\left(\frac{2C(x)-C(x)^2}{2-2C(x)}\right)
\left(\frac{\left(2-2C(x)\right)^2-\left(2C(x) - C(x)^2\right)(-2)}{(2-2C(x))^2}\right)
- 1\\
&= x \exp\left(\frac{2C(x)-C(x)^2}{2-2C(x)}\right)
\left(1+\frac{4C(x) - 2C(x)^2}{(2-2C(x))^2}\right)
- 1
\end{aligned}
}
\]
牛顿迭代:
\[
\begin{aligned}
C_1(x) &= C(x) - \frac{G(C(x))}{G'(C(x))} \\
&= C(x) - \frac{2x\exp\left(\frac{2C(x)-C(x)^2}{2-2C(x)}\right)-2C(x)}
{x \exp\left(\frac{2C(x)-C(x)^2}{2-2C(x)}\right)
\left(1+\frac{1}{(C(x)-1)^2}\right)
- 2}
\end{aligned}
\]
[LOJ161] 仙人掌计数的更多相关文章
- [LOJ6569] 仙人掌计数
Statement 带标号仙人掌计数问题. \(n< 131072\). Solution 设\(x\)个点的仙人掌个数的生成函数为\(C(x)\) 对于与根相邻的块, 还是仙人掌, 生成函数为 ...
- WinterCamp2017 游记
Winter is coming! Day0 Day0前一天打了一轮CF,做完了ABCD,Div2 Rank59.然后就去开开心心的睡觉,准备第二天的行程. 快到一点的时候躺在了床上,睡不着,翻来覆去 ...
- [日常] NOIWC2019 冬眠记
NOIWC 2019 冬眠记 辣鸡rvalue天天写意识流流水账 Day 0 早上没有跑操(极度舒服.png) 和春哥在博客颓图的时候突然被来送笔电的老爹查水表(捂脸) 母上大人骗我说这功能机不能放存 ...
- WC2017游记
Day0 到杭州之后出了点锅换了辆车,等了好久才开= =到宿舍发现路由器就在房门口,稳啊,过了一会儿就连不上了= =而且只有门口那个连不上,可以连上楼下的= =之后干了啥也忘了…… Day1 上午直接 ...
- REHの收藏列表
搬运自本人的AcWing,所以那里的文章会挺多. 友链(同类文章) :bztMinamoto 世外明月 mlystdcall 新人手册:AcWing入门使用指南 前言 有看到好文欢迎推荐(毛遂自荐也可 ...
- $dy$讲课总结
字符串: 1.广义后缀自动机(大小为\(m\))上跑一个长度为\(n\)的串,所有匹配位置及在\(parent\)树上其祖先的数量的和为\(min(n^2,m)\),单次最劣是\(O(m)\). 但是 ...
- UOJ#290. 【ZJOI2017】仙人掌 仙人掌,Tarjan,计数,动态规划,树形dp,递推
原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ290.html 题解 真是一道好题! 首先,如果不是仙人掌直接输出 0 . 否则,显然先把环上的边删光. ...
- 【做题】ZJOI2017仙人掌——组合计数
原文链接 https://www.cnblogs.com/cly-none/p/ZJOI2017cactus.html 给出一个\(n\)个点\(m\)条边的无向连通图,求有多少种加边方案,使得加完后 ...
- [BZOJ]1016 JSOI2008 最小生成树计数
最小生成树计数 题目描述 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同 ...
随机推荐
- jQuery测试错题解析
1. JavaScript中实现回车切换效果是利用了event对象的( )属性. A.Tab B.keyCode C.KeyCode D.KeyDown 解析:实现回车切换效果是keyCode属性.故 ...
- 阶段1 语言基础+高级_1-3-Java语言高级_1-常用API_1_第5节 String类_3_字符串的常量池
字符换是可以共享使用的,那么怎么去共享使用呢 三种方式去创建字符串.然后三种分别进行比较 3的地址和1.2的地址不一样 在堆里面有一块空间叫做字符串常量池,从jdk1.7开始.字符串常量池在堆中 字符 ...
- 用python进行月份加减的函数
import math def add_month(datamonth, num): """ 月份加减函数,返回字符串类型 :param datamonth: 时间(20 ...
- kali安装教程
首先在vm里面新建虚拟机,直接选择典型,然后下一步. 1 2 然后到了这一步,选择中间的安装程序光盘镜像文件,然后去文件里面找你自己下载的镜像,这时候可能系统会出现无法检测此光盘镜像中的操作系 ...
- C# DropDownList绑定添加新数据的三种方法
一.在前台手动绑定 <asp:DropDownList ID="DropDownList1" runat="server"> <asp: ...
- Vue --》 如何在vue中调用百度地图
1.项目根目录下下载百度地图插件 npm install vue-baidu-map –save 2.在首页index.html中引入百度地图: <script type="text/ ...
- [19/05/06-星期一] JDBC(Java DataBase Connectivity,java数据库连接)_基本知识
一.概念 JDBC(Java Database Connectivity)为java开发者使用数据库提供了统一的编程接口,它由一组java类和接口组成.是java程序与数据库系统通信的标准API. J ...
- Consul集群加入网关服务(Spring Cloud Gateway)
Consul集群加入网关服务 架构示意图 外部的应用或网站通过外部网关服务消费各种服务,内部的生产者本身也可能是消费者,内部消费行为通过内部网关服务消费. 一个内部网关和一个外部网关以及一个Consu ...
- c#用log4Net将日志写入到Oracle数据库,并写入到文件中
原文:c#用log4Net将日志写入到Oracle数据库,并写入到文件中 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https:/ ...
- Linux常用指令全集
Linux简介及Ubuntu安装 常见指令 系统管理命令 打包压缩相关命令 关机/重启机器 Linux管道 Linux软件包管理 vim使用 用户及用户组管理 文件权限管理 大牛笔记-www.weix ...