[LOJ161] 仙人掌计数
Statement
带标号仙人掌计数问题.
\(n< 131072\).
Solution
设\(x\)个点的仙人掌个数的生成函数为\(C(x)\)
对于与根相邻的块, 还是仙人掌, 生成函数为\(C(x)\)
包含根的环, 生成函数为\(\sum_{i>1}\frac{C(x)^i}{2}\)
组合起来:
\[
C(x) = x \exp{\frac{2C(x)-C(x)^2}{2-2C(x)}}
\]
设\(G(C(x)) = x\exp{\frac{2C(x)-C(x)^2}{2-2C(x)}}-C(x)\), 那么:
\[
\small{
\begin{aligned}
G'(C(x)) &= x\left(\exp{\frac{2C(x)-C(x)^2}{2-2C(x)}}\right)'-1 \\
&= x \exp\left(\frac{2C(x)-C(x)^2}{2-2C(x)}\right)\left(\frac{2C(x)-C(x)^2}{2-2C(x)}\right)' - 1 \\
&= x \exp\left(\frac{2C(x)-C(x)^2}{2-2C(x)}\right)
\left(\frac{\left(2-2C(x)\right)^2-\left(2C(x) - C(x)^2\right)(-2)}{(2-2C(x))^2}\right)
- 1\\
&= x \exp\left(\frac{2C(x)-C(x)^2}{2-2C(x)}\right)
\left(1+\frac{4C(x) - 2C(x)^2}{(2-2C(x))^2}\right)
- 1
\end{aligned}
}
\]
牛顿迭代:
\[
\begin{aligned}
C_1(x) &= C(x) - \frac{G(C(x))}{G'(C(x))} \\
&= C(x) - \frac{2x\exp\left(\frac{2C(x)-C(x)^2}{2-2C(x)}\right)-2C(x)}
{x \exp\left(\frac{2C(x)-C(x)^2}{2-2C(x)}\right)
\left(1+\frac{1}{(C(x)-1)^2}\right)
- 2}
\end{aligned}
\]
[LOJ161] 仙人掌计数的更多相关文章
- [LOJ6569] 仙人掌计数
Statement 带标号仙人掌计数问题. \(n< 131072\). Solution 设\(x\)个点的仙人掌个数的生成函数为\(C(x)\) 对于与根相邻的块, 还是仙人掌, 生成函数为 ...
- WinterCamp2017 游记
Winter is coming! Day0 Day0前一天打了一轮CF,做完了ABCD,Div2 Rank59.然后就去开开心心的睡觉,准备第二天的行程. 快到一点的时候躺在了床上,睡不着,翻来覆去 ...
- [日常] NOIWC2019 冬眠记
NOIWC 2019 冬眠记 辣鸡rvalue天天写意识流流水账 Day 0 早上没有跑操(极度舒服.png) 和春哥在博客颓图的时候突然被来送笔电的老爹查水表(捂脸) 母上大人骗我说这功能机不能放存 ...
- WC2017游记
Day0 到杭州之后出了点锅换了辆车,等了好久才开= =到宿舍发现路由器就在房门口,稳啊,过了一会儿就连不上了= =而且只有门口那个连不上,可以连上楼下的= =之后干了啥也忘了…… Day1 上午直接 ...
- REHの收藏列表
搬运自本人的AcWing,所以那里的文章会挺多. 友链(同类文章) :bztMinamoto 世外明月 mlystdcall 新人手册:AcWing入门使用指南 前言 有看到好文欢迎推荐(毛遂自荐也可 ...
- $dy$讲课总结
字符串: 1.广义后缀自动机(大小为\(m\))上跑一个长度为\(n\)的串,所有匹配位置及在\(parent\)树上其祖先的数量的和为\(min(n^2,m)\),单次最劣是\(O(m)\). 但是 ...
- UOJ#290. 【ZJOI2017】仙人掌 仙人掌,Tarjan,计数,动态规划,树形dp,递推
原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ290.html 题解 真是一道好题! 首先,如果不是仙人掌直接输出 0 . 否则,显然先把环上的边删光. ...
- 【做题】ZJOI2017仙人掌——组合计数
原文链接 https://www.cnblogs.com/cly-none/p/ZJOI2017cactus.html 给出一个\(n\)个点\(m\)条边的无向连通图,求有多少种加边方案,使得加完后 ...
- [BZOJ]1016 JSOI2008 最小生成树计数
最小生成树计数 题目描述 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同 ...
随机推荐
- python实现建立soap通信(调用及测试webservice接口)
实现代码如下: #调用及测试webservice接口 import requests class SoapConnect: def get_soap(self,url,data): r = reque ...
- TensorFlow学习笔记-总结与排错
总结 为了学习和使用tensorflow作为工具, 我决定逐步亲自动手一行行写一下: [x] MNIST手写模型; [x] MNIST多层感知机(前馈神经网络,2层); [x] MNIST卷积网络(2 ...
- Nginx https服务器证书安装步骤
本文档指导您如何在 Nginx 服务器中安装 SSL 证书. 说明: 本文档以证书名称 www.domain.com 为例. Nginx 版本以 nginx/1.16.0 为例. 当前服务器的操作系统 ...
- IDEA开发环境设置
IDEA开发环境设置 1.关闭自动更新 IntelliJ IDEA默认会自动进行版本的更新,在网络异常时经常会导致各种各样的问题,因此强烈建议关闭自动更新. File->Settings 2.隐 ...
- 20190906 On Java8 第十八章 字符串
第十八章 字符串 +的重载与StringBuilder 用于String的+与+=是Java中仅有的两个重载过的操作符,Java不允许程序员重载任何其他的操作符.编译器自动引入了java.lang.S ...
- c语言秋季作业2
问题 答案 这个作业属于哪个课程 C语言程序设计I 这个作业要求在哪里 https://edu.cnblogs.com/campus/zswxy/CST2019-4/homework/8657 我在这 ...
- python对excel表格进行操作
python 对 EXCEL 进行操作 背景:对excel表格中某一列进行base 64解码操作,由于数据量比较庞大,就考虑用Python代码完成. 首先,分析整个文件操作中分为三步,第一步,对需要解 ...
- linux下的SSHD被连接端口修改
连接别人:vim /etc/ssh/ssh_config 被连接: vim /etc/ssh/sshd_config 端口重启生效: /etc/init.d/sshd restart
- 关于Python学习的一点说明
关于Python学习的一点说明 我是用什么地方的资料来学习python的呢? 答案当然是鼎鼎大名的GitHub了. 5万多星推荐,100天让你从入门到精通,你值得拥有,点我进入查看
- HDU 6468 /// DFS
题目大意: 把 1~15 的数字典序排序后为 1, 10, 11, 12, 13, 14, 15, 2, 3, 4, 5, 6, 7, 8, 9 此时给定 n k, 求1~n的数组字典序排序后 第k个 ...