题目:https://atcoder.jp/contests/agc002/tasks/agc002_f

充要条件是前缀0的个数 >= 颜色种数。

设计 DP ,放一个颜色的时候就把所有该颜色的点都考虑完,不要一个一个放。这样就不用考虑 “剩下多少个旧颜色的点可用” 了。

新放一种颜色的时候,知道现在已经填了多少个位置,所以所有该颜色点的放置方案数是可算的。

dp[ i ][ j ] 表示放了 i 个 0 、j 种颜色的方案。认为颜色是按顺序放的,最后乘上阶乘。就有 \( dp[i][j] -> dp[i+1][j] , dp[i][j]*\binom{(n-j)(k-1)+n-i-1}{k-2} -> dp[i][j+1] \) 。

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const int N=,M=N*N,mod=1e9+;
int upt(int x)
{while(x>=mod)x-=mod;while(x<)x+=mod;return x;}
int pw(int x,int k)
{int ret=;while(k){if(k&)ret=(ll)ret*x%mod;x=(ll)x*x%mod;k>>=;}return ret;} int n,k,jc[M],jcn[M],dp[N][N];
void init()
{
int lm=n*k;
jc[]=;for(int i=;i<=lm;i++)jc[i]=(ll)jc[i-]*i%mod;
jcn[lm]=pw(jc[lm],mod-);
for(int i=lm-;i>=;i--)jcn[i]=(ll)jcn[i+]*(i+)%mod;
}
int C(int n,int m)
{
if(n<||m<||n<m)return ;
return (ll)jc[n]*jcn[m]%mod*jcn[n-m]%mod;
}
int main()
{
scanf("%d%d",&n,&k); if(k==){puts("");return ;}
init();
dp[][]=;
for(int i=;i<=n;i++)
for(int j=;j<=i;j++)
{
if(!dp[i][j])continue;int tp=dp[i][j];
if(i<n)dp[i+][j]=upt(dp[i+][j]+tp);
if(j<i)
{
int ml=C((n-j)*(k-)+n-i-,k-);
dp[i][j+]=(dp[i][j+]+(ll)ml*tp)%mod;
}
}
printf("%lld\n",(ll)dp[n][n]*jc[n]%mod);
return ;
}

AGC002 F Leftmost Ball——DP的更多相关文章

  1. AGC002 F - Leftmost Ball

    貌似哪里讲过这题..总之当时掉线了(理解能力又差水平又低选手的日常).. 看看题目,应该是DP. 尝试了几次换状态,毫无思路.那我们就来继续挖掘性质吧...为了更直观,我们令第i个出现的球颜色就是i( ...

  2. AtCoder Grand Contest 002 (AGC002) F - Leftmost Ball 动态规划 排列组合

    原文链接https://www.cnblogs.com/zhouzhendong/p/AGC002F.html 题目传送门 - AGC002F 题意 给定 $n,k$ ,表示有 $n\times k$ ...

  3. 【AtCoder】AGC022 F - Leftmost Ball 计数DP

    [题目]F - Leftmost Ball [题意]给定n种颜色的球各k个,每次以任意顺序排列所有球并将每种颜色最左端的球染成颜色0,求有多少种不同的颜色排列.n,k<=2000. [算法]计数 ...

  4. Atcoder Grand Contest 002 F - Leftmost Ball(dp)

    Atcoder 题面传送门 & 洛谷题面传送门 这道 Cu 的 AGC F 竟然被我自己想出来了!!!((( 首先考虑什么样的序列会被统计入答案.稍微手玩几组数据即可发现,一个颜色序列 \(c ...

  5. AtCoder AGC002F Leftmost Ball (DP、组合计数)

    题目链接: https://atcoder.jp/contests/agc002/tasks/agc002_f 题解: 讲一下官方题解的做法: 就是求那个图(官方题解里的)的拓扑序个数,设\(dp[i ...

  6. 【AGC002F】Leftmost Ball DP 数学

    题目大意 有\(n\)种颜色的球,每种\(m\)个.现在zjt把这\(nm\)个球排成一排,然后把每种颜色的最左边的球染成第\(n+1\)种颜色.求最终的颜色序列有多少种,对\(1000000007\ ...

  7. ATcoder 2000 Leftmost Ball

    Problem Statement Snuke loves colorful balls. He has a total of N×K balls, K in each of his favorite ...

  8. 【AGC 002F】Leftmost Ball

    Description Snuke loves colorful balls. He has a total of N*K balls, K in each of his favorite N col ...

  9. 【agc002f】Leftmost Ball(动态规划)

    [agc002f]Leftmost Ball(动态规划) 题面 atcoder 洛谷 题解 我们从前往后依次把每个颜色按顺序来放,那么如果当前放的是某种颜色的第一个球,那么放的就会变成\(0\)号颜色 ...

随机推荐

  1. Nginx 模块 - ngx_core_module

    原文地址 示例配置 指令 accept_mutex accept_mutex_delay daemon debug_connection debug_points env error_log even ...

  2. pygame应用——生产者消费者模型

    因为操作系统的一个生产者-消费者拓展作业,以一个飞机大战的模型修改来的 import pygame import time from pygame.locals import * bulletsNum ...

  3. Aizu - ALDS1_4_C Dictionary

    Search III Your task is to write a program of a simple dictionary which implements the following ins ...

  4. 面向JVM的应用程序的项目结构

    对于Maven所用的项目结构,称为Maven标准的目录结构,不包含git 一.一个典型的源代码结构: / [project-name] README.txt LICENSE.txt pom.xml / ...

  5. C++学习笔记(四)--指针

    1.指针(变量的地址): 指针变量:存放指针(地址)的变量 直接存取(访问):按变量地址取值 间接存取(访问):将变量的地址放入指针变量中 定义指针变量:基类型 *指针变量名 2.与指针有关的运算符: ...

  6. SQL常用语句之数据库中表的创建、删除以及属性的修改-篇幅3

    一.表的创建: CREATE TABLE [database_name.[schema_name].|schema_name.]table_name (column_name1 data_type   ...

  7. [Linux] 013 其他文件搜索命令

    1. 文件搜索命令:locate 命令名称:locate 命令所在路径:/bin/locate 执行权限:所有用户 语法:locate 文件名 功能描述:在文件资料库中查找文件 范例: $ locat ...

  8. Mysql 实现基于binlog的主从同步

    工作原理 1.主节点必须启用二进制日志,记录任何修改了数据库数据的事件.2.从节点开启一个线程(I/O Thread)把自己扮演成 mysql 的客户端,通过 mysql 协议,请求主节点的二进制日志 ...

  9. [已解决]报错: Windows下Redis服务无法启动,错误 1067 进程意外终止解决方案

    启动redis时出现的报错内容: 解决方法: 找到登录状态 如果是网络服务,直接双击此服务,修改为本地系统服务即可启动!

  10. [BZOJ 3991][SDOI2015]寻宝游戏(dfs序)

    题面 小B最近正在玩一个寻宝游戏,这个游戏的地图中有N个村庄和N-1条道路,并且任何两个村庄之间有且仅有一条路径可达.游戏开始时,玩家可以任意选择一个村庄,瞬间转移到这个村庄,然后可以任意在地图的道路 ...