题目:https://atcoder.jp/contests/agc002/tasks/agc002_f

充要条件是前缀0的个数 >= 颜色种数。

设计 DP ,放一个颜色的时候就把所有该颜色的点都考虑完,不要一个一个放。这样就不用考虑 “剩下多少个旧颜色的点可用” 了。

新放一种颜色的时候,知道现在已经填了多少个位置,所以所有该颜色点的放置方案数是可算的。

dp[ i ][ j ] 表示放了 i 个 0 、j 种颜色的方案。认为颜色是按顺序放的,最后乘上阶乘。就有 \( dp[i][j] -> dp[i+1][j] , dp[i][j]*\binom{(n-j)(k-1)+n-i-1}{k-2} -> dp[i][j+1] \) 。

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const int N=,M=N*N,mod=1e9+;
int upt(int x)
{while(x>=mod)x-=mod;while(x<)x+=mod;return x;}
int pw(int x,int k)
{int ret=;while(k){if(k&)ret=(ll)ret*x%mod;x=(ll)x*x%mod;k>>=;}return ret;} int n,k,jc[M],jcn[M],dp[N][N];
void init()
{
int lm=n*k;
jc[]=;for(int i=;i<=lm;i++)jc[i]=(ll)jc[i-]*i%mod;
jcn[lm]=pw(jc[lm],mod-);
for(int i=lm-;i>=;i--)jcn[i]=(ll)jcn[i+]*(i+)%mod;
}
int C(int n,int m)
{
if(n<||m<||n<m)return ;
return (ll)jc[n]*jcn[m]%mod*jcn[n-m]%mod;
}
int main()
{
scanf("%d%d",&n,&k); if(k==){puts("");return ;}
init();
dp[][]=;
for(int i=;i<=n;i++)
for(int j=;j<=i;j++)
{
if(!dp[i][j])continue;int tp=dp[i][j];
if(i<n)dp[i+][j]=upt(dp[i+][j]+tp);
if(j<i)
{
int ml=C((n-j)*(k-)+n-i-,k-);
dp[i][j+]=(dp[i][j+]+(ll)ml*tp)%mod;
}
}
printf("%lld\n",(ll)dp[n][n]*jc[n]%mod);
return ;
}

AGC002 F Leftmost Ball——DP的更多相关文章

  1. AGC002 F - Leftmost Ball

    貌似哪里讲过这题..总之当时掉线了(理解能力又差水平又低选手的日常).. 看看题目,应该是DP. 尝试了几次换状态,毫无思路.那我们就来继续挖掘性质吧...为了更直观,我们令第i个出现的球颜色就是i( ...

  2. AtCoder Grand Contest 002 (AGC002) F - Leftmost Ball 动态规划 排列组合

    原文链接https://www.cnblogs.com/zhouzhendong/p/AGC002F.html 题目传送门 - AGC002F 题意 给定 $n,k$ ,表示有 $n\times k$ ...

  3. 【AtCoder】AGC022 F - Leftmost Ball 计数DP

    [题目]F - Leftmost Ball [题意]给定n种颜色的球各k个,每次以任意顺序排列所有球并将每种颜色最左端的球染成颜色0,求有多少种不同的颜色排列.n,k<=2000. [算法]计数 ...

  4. Atcoder Grand Contest 002 F - Leftmost Ball(dp)

    Atcoder 题面传送门 & 洛谷题面传送门 这道 Cu 的 AGC F 竟然被我自己想出来了!!!((( 首先考虑什么样的序列会被统计入答案.稍微手玩几组数据即可发现,一个颜色序列 \(c ...

  5. AtCoder AGC002F Leftmost Ball (DP、组合计数)

    题目链接: https://atcoder.jp/contests/agc002/tasks/agc002_f 题解: 讲一下官方题解的做法: 就是求那个图(官方题解里的)的拓扑序个数,设\(dp[i ...

  6. 【AGC002F】Leftmost Ball DP 数学

    题目大意 有\(n\)种颜色的球,每种\(m\)个.现在zjt把这\(nm\)个球排成一排,然后把每种颜色的最左边的球染成第\(n+1\)种颜色.求最终的颜色序列有多少种,对\(1000000007\ ...

  7. ATcoder 2000 Leftmost Ball

    Problem Statement Snuke loves colorful balls. He has a total of N×K balls, K in each of his favorite ...

  8. 【AGC 002F】Leftmost Ball

    Description Snuke loves colorful balls. He has a total of N*K balls, K in each of his favorite N col ...

  9. 【agc002f】Leftmost Ball(动态规划)

    [agc002f]Leftmost Ball(动态规划) 题面 atcoder 洛谷 题解 我们从前往后依次把每个颜色按顺序来放,那么如果当前放的是某种颜色的第一个球,那么放的就会变成\(0\)号颜色 ...

随机推荐

  1. nacos 报错is not in serverlist

    描述 nacos 没有在节点列表里面 查看日志 cd /opt/nacos/ tailf /logs/naming-raft.log <!--报错--> 2019-08-16 17:48: ...

  2. 使用TensorFlow的基本步骤

    学习任务 学习使用TensorFlow,并以california的1990年的人口普查中的城市街区的房屋价值中位数作为预测目标,使用均方根误差(RMSE)评估模型的准确率,并通过调整超参数提高模型的准 ...

  3. lib.tcl

    #********************************************************************# 功能描述:定义公共的函数# 依赖关系:依赖于全局aitoo ...

  4. [洛谷P1552] [APIO2012]派遣(左偏树)

    这道题是我做的左偏树的入门题,奈何还是看了zsy大佬的题解才能过,唉,我太弱了. 左偏树总结 Part 1 理解题目 很显然,通过管理关系的不断连边,最后连出来的肯定是一棵树,那么不难得出,当一个忍者 ...

  5. k8s nginx ingress配置TLS

    在没有配置任何nginx下,k8s的nginx默认只支持TLS1.2,不支持TLS1.0和TLS1.1 默认的 nginx-config(部分可能叫 nginx-configuration)的配置如下 ...

  6. sqlite查询语句

    搜索距现在六个月前的月份第一天日期: SELECT date('now','start of month','-6 month','0 day'); 搜索距现在六个月前的日期: SELECT date ...

  7. combox系列问题集

    visual studio崩溃 你是不是经常会遇到一编辑combox,visual studio就会立马崩溃.一直都无法理解是什么原因,然后后来发现居然是因为有道的截屏翻译,关掉截屏翻译就好了. co ...

  8. elasticsearch 深入 —— Search Type检索类型

    在此我们再给出那个查询的代码: $ curl -XGET localhost:9200/startswith/test/_search?pretty -d '{ "query": ...

  9. Solr的学习使用之(三)IKAnalyzer中文分词器的配置

    1.为什么要配置? 1.我们知道要使用Solr进行搜索,肯定要对词语进行分词,但是由于Solr的analysis包并没有带支持中文的包或者对中文的分词效果不好,需要自己添加中文分词器:目前呼声较高的是 ...

  10. 根据配置RedisProperties自动获取RedisConnectionFactory

    #单点配置 spring.redis.host=192.168.1.1 spring.redis.port=6379 #哨兵配置 #spring.redis.sentinel.master=commo ...