题目:https://atcoder.jp/contests/agc002/tasks/agc002_f

充要条件是前缀0的个数 >= 颜色种数。

设计 DP ,放一个颜色的时候就把所有该颜色的点都考虑完,不要一个一个放。这样就不用考虑 “剩下多少个旧颜色的点可用” 了。

新放一种颜色的时候,知道现在已经填了多少个位置,所以所有该颜色点的放置方案数是可算的。

dp[ i ][ j ] 表示放了 i 个 0 、j 种颜色的方案。认为颜色是按顺序放的,最后乘上阶乘。就有 \( dp[i][j] -> dp[i+1][j] , dp[i][j]*\binom{(n-j)(k-1)+n-i-1}{k-2} -> dp[i][j+1] \) 。

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const int N=,M=N*N,mod=1e9+;
int upt(int x)
{while(x>=mod)x-=mod;while(x<)x+=mod;return x;}
int pw(int x,int k)
{int ret=;while(k){if(k&)ret=(ll)ret*x%mod;x=(ll)x*x%mod;k>>=;}return ret;} int n,k,jc[M],jcn[M],dp[N][N];
void init()
{
int lm=n*k;
jc[]=;for(int i=;i<=lm;i++)jc[i]=(ll)jc[i-]*i%mod;
jcn[lm]=pw(jc[lm],mod-);
for(int i=lm-;i>=;i--)jcn[i]=(ll)jcn[i+]*(i+)%mod;
}
int C(int n,int m)
{
if(n<||m<||n<m)return ;
return (ll)jc[n]*jcn[m]%mod*jcn[n-m]%mod;
}
int main()
{
scanf("%d%d",&n,&k); if(k==){puts("");return ;}
init();
dp[][]=;
for(int i=;i<=n;i++)
for(int j=;j<=i;j++)
{
if(!dp[i][j])continue;int tp=dp[i][j];
if(i<n)dp[i+][j]=upt(dp[i+][j]+tp);
if(j<i)
{
int ml=C((n-j)*(k-)+n-i-,k-);
dp[i][j+]=(dp[i][j+]+(ll)ml*tp)%mod;
}
}
printf("%lld\n",(ll)dp[n][n]*jc[n]%mod);
return ;
}

AGC002 F Leftmost Ball——DP的更多相关文章

  1. AGC002 F - Leftmost Ball

    貌似哪里讲过这题..总之当时掉线了(理解能力又差水平又低选手的日常).. 看看题目,应该是DP. 尝试了几次换状态,毫无思路.那我们就来继续挖掘性质吧...为了更直观,我们令第i个出现的球颜色就是i( ...

  2. AtCoder Grand Contest 002 (AGC002) F - Leftmost Ball 动态规划 排列组合

    原文链接https://www.cnblogs.com/zhouzhendong/p/AGC002F.html 题目传送门 - AGC002F 题意 给定 $n,k$ ,表示有 $n\times k$ ...

  3. 【AtCoder】AGC022 F - Leftmost Ball 计数DP

    [题目]F - Leftmost Ball [题意]给定n种颜色的球各k个,每次以任意顺序排列所有球并将每种颜色最左端的球染成颜色0,求有多少种不同的颜色排列.n,k<=2000. [算法]计数 ...

  4. Atcoder Grand Contest 002 F - Leftmost Ball(dp)

    Atcoder 题面传送门 & 洛谷题面传送门 这道 Cu 的 AGC F 竟然被我自己想出来了!!!((( 首先考虑什么样的序列会被统计入答案.稍微手玩几组数据即可发现,一个颜色序列 \(c ...

  5. AtCoder AGC002F Leftmost Ball (DP、组合计数)

    题目链接: https://atcoder.jp/contests/agc002/tasks/agc002_f 题解: 讲一下官方题解的做法: 就是求那个图(官方题解里的)的拓扑序个数,设\(dp[i ...

  6. 【AGC002F】Leftmost Ball DP 数学

    题目大意 有\(n\)种颜色的球,每种\(m\)个.现在zjt把这\(nm\)个球排成一排,然后把每种颜色的最左边的球染成第\(n+1\)种颜色.求最终的颜色序列有多少种,对\(1000000007\ ...

  7. ATcoder 2000 Leftmost Ball

    Problem Statement Snuke loves colorful balls. He has a total of N×K balls, K in each of his favorite ...

  8. 【AGC 002F】Leftmost Ball

    Description Snuke loves colorful balls. He has a total of N*K balls, K in each of his favorite N col ...

  9. 【agc002f】Leftmost Ball(动态规划)

    [agc002f]Leftmost Ball(动态规划) 题面 atcoder 洛谷 题解 我们从前往后依次把每个颜色按顺序来放,那么如果当前放的是某种颜色的第一个球,那么放的就会变成\(0\)号颜色 ...

随机推荐

  1. 数据挖掘与CRM

    数据挖掘与CRM 现在的数据挖掘项目多数都是游击战,这边挖一挖那边挖一挖,挖到最后还是一场空,还落了个"忽悠"绰号:回想数据挖掘的一个标准流程,那只是一个数据挖掘类项目的标杆而已, ...

  2. mysql 8.X.X版本多个ip限制访问

    随笔记录,由于客户要求数据库不同ip访问,查了很多,多数都是ip段或者所有ip可以访问: select user,host from user;可以查看某些用户可以访问的ip:但只能设置一个用户一条记 ...

  3. MySQL 中的 information_schema 数据库

    1. 概述 information_schema 数据库跟 performance_schema 一样,都是 MySQL 自带的信息数据库.其中 performance_schema 用于性能分析,而 ...

  4. jQuery DataTables 分页

    HTML:================================================================== <div class="ibox-con ...

  5. 微信小程序这一块(续)

    1.设置头部的信息 通过wx.setNavigationBarTitle 详情见:https://developers.weixin.qq.com/miniprogram/dev/api/ui/nav ...

  6. (1)leetcode刷题Python笔记——两数之和

    题目如下: 给定一个整数数组 nums 和一个目标值 target,请你在该数组中找出和为目标值的那 两个 整数,并返回他们的数组下标. 你可以假设每种输入只会对应一个答案.但是,你不能重复利用这个数 ...

  7. input复制文本

    input.value = this.$t('title') document.body.appendChild(input) input.select() input.setSelectionRan ...

  8. java序列化的相关介绍

    1.什么是序列化?为什么要用序列化? 序列化就是将对象状态转换为可保持或传输的格式的过程.与序列化相对的就是反序列化,他将流转换成对象.这两个过程结合起来,可以轻松地存储和传输数据. 注意:对象序列化 ...

  9. 洛谷 P1339 [USACO09OCT]热浪Heat Wave(dijkstra)

    题目链接 https://www.luogu.org/problemnew/show/P1339 最短路 解题思路 dijkstra直接过 注意: 双向边 memset ma数组要在读入之前 AC代码 ...

  10. CodeForces 711D Directed Roads (DFS找环+组合数)

    <题目链接> 题目大意: 给定一个$n$条边,$n$个点的图,每个点只有一条出边(初始状态),现在能够任意对图上的边进行翻转,问你能够使得该有向图不出先环的方案数有多少种. 解题分析: 很 ...