题目传送门

https://codeforces.com/contest/1103/problem/C

题解

这个题还算一个有难度的不错的题目吧。

题目给出了两种回答方式:

  1. 找出一条长度 \(\geq \frac nk\) 的路径;
  2. 找出 \(k\) 个简单环,满足长度不是 \(3\) 的倍数,并且每个环至少存在一个点不在别的环中。

很显然题目并不是要你随便挑一种回答方式开始单独研究。最有可能的情况是两种回答方式可以替补。


如果我们随便作出原图的一棵生成树,如果最长的路径长度 \(\geq \frac nk\),那么我们可以直接输出。否则,很容易发现,这棵树上至少有 \(k\) 个叶子。

很容易把 \(k\) 个叶子往第二种回答方式中的 \(k\) 个环上联想。但是第二个回答方式中的几个条件我们还都要满足。

对于“每个环至少存在一个点不在别的环中”这个条件,等价于就是说,每一个叶子不会和其余的叶子有连边。dfs 树可以保证这个性质,同时 dfs 树还可以保证,每一个点出来的非树边一定是返祖边。那么,建立 dfs 树以后,每个环就是每一个叶子和它的一些祖先之间的事情了。

接着考虑环的长度不是 \(3\) 的倍数的这个条件。

首先,我们不妨假设叶子 \(x\) 连向的两条返祖边指向的点分别为 \(x\) 的祖先为 \(f_1\) 和 \(f_2\)。

那么我们得到了三个环 \(x \to f_1 \to x\),\(x\to f_2 \to x\),\(f_1\to f_2 \to x\)。

然后三条路径的长度为别为 \(dep_x - dep_{f_1} + 1\),\(dep_x - dep_{f_2} + 1\),\(dep_{f_1} - dep_{f_2} + 2\)。

如果 \(dep_x - dep_{f_1} + 1\) 和 \(dep_x - dep_{f_2} + 1\) 都是 \(3\) 的倍数(否则输出其中的一个就可以了),那么就是说 \((dep_x - dep_{f_1}) - (dep_x - dep_{f_2}) + 2 = dep_{f_1} - dep_{f_2} + 2\) 模上 \(3\) 应该是 \(2\)。

也就是说,上面的三个环中至少存在一个环的长度不是 \(3\) 的倍数。输出哪一个即可。


时间复杂度 \(O(n+m)\)。

#include<bits/stdc++.h>

#define fec(i, x, y) (int i = head[x], y = g[i].to; i; i = g[i].ne, y = g[i].to)
#define dbg(...) fprintf(stderr, __VA_ARGS__)
#define File(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout)
#define fi first
#define se second
#define pb push_back template<typename A, typename B> inline char smax(A &a, const B &b) {return a < b ? a = b, 1 : 0;}
template<typename A, typename B> inline char smin(A &a, const B &b) {return b < a ? a = b, 1 : 0;} typedef long long ll; typedef unsigned long long ull; typedef std::pair<int, int> pii; template<typename I> inline void read(I &x) {
int f = 0, c;
while (!isdigit(c = getchar())) c == '-' ? f = 1 : 0;
x = c & 15;
while (isdigit(c = getchar())) x = (x << 1) + (x << 3) + (c & 15);
f ? x = -x : 0;
} const int N = 2.5e5 + 7;
const int M = 5e5 + 7; int n, m, k, nk;
int fz[N][3], f[N], chk[N], vis[N], dep[N]; struct Edge { int to, ne; } g[M << 1]; int head[N], tot;
inline void addedge(int x, int y) { g[++tot].to = y, g[tot].ne = head[x], head[x] = tot; }
inline void adde(int x, int y) { addedge(x, y), addedge(y, x); } inline void dfs(int x, int fa = 0) {
f[x] = fa, vis[x] = 1, dep[x] = dep[fa] + 1;
int &c = chk[x] = 1;
for fec(i, x, y)
if (!vis[y]) c = 0, dfs(y, x);
else if (y != fa && fz[x][0] < 2) fz[x][++fz[x][0]] = y;
} inline void work() {
dfs(1);
for (int i = 1; i <= n; ++i) if (dep[i] >= nk) {
puts("PATH");
printf("%d\n", dep[i]);
for (int x = i; x; x = f[x]) printf("%d%c", x, " \n"[!f[x]]);
return;
}
puts("CYCLES");
int cnt = 0;
for (int i = 1; i <= n; ++i) if (chk[i]) {
++cnt;
if (dep[fz[i][1]] < dep[fz[i][2]]) std::swap(fz[i][1], fz[i][2]);
if ((dep[i] - dep[fz[i][1]]) % 3 != 2) {
int ans = 0;
for (int x = i; x != f[fz[i][1]]; x = f[x]) ++ans;
printf("%d\n", ans);
for (int x = i; x != f[fz[i][1]]; x = f[x]) printf("%d%c", x, " \n"[x == fz[i][1]]);
} else {
if ((dep[i] - dep[fz[i][2]]) % 3 != 2) {
int ans = 0;
for (int x = i; x != f[fz[i][2]]; x = f[x]) ++ans;
printf("%d\n", ans);
for (int x = i; x != f[fz[i][2]]; x = f[x]) printf("%d%c", x, " \n"[x == fz[i][2]]);
} else {
int ans = 1;
for (int x = fz[i][1]; x != f[fz[i][2]]; x = f[x]) ++ans;
printf("%d\n", ans);
for (int x = fz[i][1]; x != f[fz[i][2]]; x = f[x]) printf("%d ", x);
printf("%d\n", i);
}
}
if (cnt >= k) return;
}
assert(cnt >= k);
} inline void init() {
read(n), read(m), read(k), nk = (n - 1) / k + 1;
int x, y;
for (int i = 1; i <= m; ++i) read(x), read(y), adde(x, y);
} int main() {
#ifdef hzhkk
freopen("hkk.in", "r", stdin);
#endif
init();
work();
fclose(stdin), fclose(stdout);
return 0;
}

CF1103C Johnny Solving (Codeforces Round #534 (Div. 1)) 思维+构造的更多相关文章

  1. Codeforces Round #534 (Div. 2)

    B. Game with string 题意: 给出一个字符串s只包括小写字母.当轮到一个玩家的时候,他可以选择两个连续且相等的字母并且删除它.当一个玩家没得删的时候他就输了. 题解: 乍一看有点懵, ...

  2. Codeforces Round #534 (Div. 2) Solution

    A. Splitting into digits Solved. #include <bits/stdc++.h> using namespace std; int n; void sol ...

  3. 20191028 Codeforces Round #534 (Div. 1) - Virtual Participation

    菜是原罪. 英语不好更是原罪. \(\mathrm{A - Grid game}\) 题解 \(4 \times 4\) 的格子,两种放法. 发现这两种在一起时候很讨厌,于是强行拆分这个格子 上面 \ ...

  4. Codeforces Round #534 (Div. 2) D. Game with modulo(取余性质+二分)

    D. Game with modulo 题目链接:https://codeforces.com/contest/1104/problem/D 题意: 这题是一个交互题,首先一开始会有一个数a,你最终的 ...

  5. CF1103D Codeforces Round #534 (Div. 1) Professional layer 状压 DP

    题目传送门 https://codeforces.com/contest/1103/problem/D 题解 失去信仰的低水平选手的看题解的心路历程. 一开始看题目以为是选出一些数,每个数可以除掉一个 ...

  6. Codeforces Round #534 (Div. 1)

    A 构造题 有一个44的方格 每次放入一个横向12或竖向2*1的方格 满了一行或一列就会消掉 求方案 不放最后一行 这样竖行就不会消 然后竖着的放前两行 横着的放第三行 循环放就可以啦 #includ ...

  7. Codeforces Round #534 (Div. 2)D. Game with modulo-1104-D(交互+二分+构造)

    D. Game with modulo time limit per test 1 second memory limit per test 256 megabytes input standard ...

  8. [ACM]Codeforces Round #534 (Div. 2)

    A. Splitting into digits Vasya has his favourite number n. He wants to split it to some non-zero dig ...

  9. Codeforces 1104 D. Game with modulo-交互题-二分-woshizhizhang(Codeforces Round #534 (Div. 2))

    D. Game with modulo time limit per test 1 second memory limit per test 256 megabytes input standard ...

随机推荐

  1. cmake使用2

    CMake支持大写.小写.混合大小写的命令. . 添加头文件目录INCLUDE_DIRECTORIES 语法:include_directories([AFTER|BEFORE] [SYSTEM] d ...

  2. sklearn—支持向量机

    SVC介绍: 拟合出来的模型为一个超平面 解决与样本维数无关,适合做文本分类 解决小样本.非线性.高维 是用于分类.回归.孤立点检测的监督学习方法的集合. 优点: 有效的高维空间 维数大于样本数的时候 ...

  3. 通过同步上下文方式更新winform中的控件信息

    SynchronizationContext 类是一个基类,可提供不带同步的自由线程上下文. 此类实现的同步模型的目的是使公共语言运行库内部的异步/同步操作能够针对不同的异步模型采取正确的行为.此模型 ...

  4. 几家大的券商的PB系统以及算法交易概况大致是怎样的?

    PB的定位是托管-清算-交易.目前的PB系统方面的竞争点主要放在了交易环节(毕竟托管和清算没有多大的差异).目前的pb交易环节的技术提供有恒生.讯投.金证.同花顺等,以满足私募及高净值个人多样化交易和 ...

  5. 【SQL系列】从SQL语言的分类谈COMMIT和ROLLBACK的用法

    公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[SQL系列]从SQL语言的分类谈COMMIT和 ...

  6. 关于java范型

    1 范型只在编译阶段有效 编译器在编译阶段检查范型结果之后,就会将范型信息删除.范型信息不会进入运行时阶段. 泛型类型在逻辑上看以看成是多个不同的类型,实际上都是相同的基本类型. 2 不能对确定的范型 ...

  7. 获取kafka最新offset-scala

    无论是在spark streaming消费kafka,或是监控kafka的数据时,我们经常会需要知道offset最新情况 kafka数据的topic基于分区,并且通过每个partition的主分区可以 ...

  8. 安装Linux系统CentOS6.5

    个人机器搭建分布式环境时避免要使用虚拟机来满足分布式环境所需的机器,当然伪分布式除外. 简单记录下虚拟机环境的创建过程,Mac上常用的虚拟机VMware Fusion. 虚拟机资源库中新建虚拟机: 选 ...

  9. vue组件命名和传值

    一.vue组件命名: 组件有好几种命名方式, 可以使用 component-vue (短横线分隔命名).componentVue  (驼峰式命名) 或ComponentVue  (单词首字母) 因为h ...

  10. vue+express利用token 完成前后端登录

    token是后端给前端的一个二维码, 这个二维码一般是暗码,  前端拿着这个二维码到后端, 后端便可以通过这个二维码得知用户是否登录过, 用户是谁等信息(具体什么信息,是后端在返回token时候设置的 ...