题目传送门(内部题96)


输入格式

  第一行一个整数$n$,接下来$n$行每行三个整数$a_i,b_i,w_i$。


输出格式

  一行一个整数表示最大权值和。


样例

样例输入:

5
4 4 1
2 3 3
1 5 1
4 2 2
5 2 3

样例输出:

7


数据范围与提示

  对于$10\%$的数据,$n\leqslant 8$。
  对于$40\%$的数据,$n\leqslant 200$。
  对于$70\%$的数据,$n\leqslant 3,000$。
  对于$100\%$的数据,$1\leqslant n\leqslant 10^5 ,1\leqslant a_i,b_i,w_i\leqslant 10^9$。


题解

先来考虑如何选择最优,按$a_i+b_i$从小到大排序和按$min(a_i,b_i)$从小到大排序都能通过此题(我也不知道为什么)。

发现$a_i,b_i$只与其大小有关,而与其具体值无关,所以直接离散化就好了。

考虑$DP$,定义$dp[i][j]$表示选到第$i$个,$\min(a_i)$为$j$的最大贡献。

可以写出转移:

$$dp[i][j]=\max(dp[i-1][j])$$

$$dp[i][\max(j,a[i])]=\max(dp[i-1][j]+w[i])$$

显然无论是空间还是时间都不能容忍,考虑优化。

发现其实就是一个区间加的过程,于是可以用线段树优化。

时间复杂度:$\Theta(n\log cnt)$(其中$cnt$为不同的$a_i$和$b_i$的种数)。

期望得分:$100$分。

实际得分:$100$分。


代码时刻

#include<bits/stdc++.h>
#define L(x) x<<1
#define R(x) x<<1|1
using namespace std;
unordered_map<int,int>mp;
struct rec{int a,b,w;}e[100001];
int n;
int cnt;
int que[200001];
long long tr[1000000],lz[1000000];
bool cmp(rec a,rec b){return a.a+a.b<b.a+b.b;}
void pushup(int x){tr[x]=max(tr[L(x)],tr[R(x)]);}
void pushdown(int x)
{
tr[L(x)]+=lz[x];
tr[R(x)]+=lz[x];
lz[L(x)]+=lz[x];
lz[R(x)]+=lz[x];
lz[x]=0;
}
void add(int x,int l,int r,int L,int R,int w)
{
if(r<L||R<l)return;
if(L<=l&&r<=R)
{
tr[x]+=w;
lz[x]+=w;
return;
}
int mid=(l+r)>>1;
pushdown(x);
add(L(x),l,mid,L,R,w);
add(R(x),mid+1,r,L,R,w);
pushup(x);
}
void upd(int x,int l,int r,int k,long long w)
{
if(l==r)
{
tr[x]=max(tr[x],w);
return;
}
int mid=(l+r)>>1;pushdown(x);
if(k<=mid)upd(L(x),l,mid,k,w);
else upd(R(x),mid+1,r,k,w);
pushup(x);
}
long long ask(int x,int l,int r,int L,int R)
{
if(r<L||R<l)return -0x3f3f3f3f3f3f3f3f;
if(L<=l&&r<=R)return tr[x];
int mid=(l+r)>>1;pushdown(x);
return max(ask(L(x),l,mid,L,R),ask(R(x),mid+1,r,L,R));
}
int main()
{
scanf("%lld",&n);int top=0;
for(int i=1;i<=n;i++)
{
scanf("%d%d%d",&e[i].a,&e[i].b,&e[i].w);
que[++top]=e[i].a;que[++top]=e[i].b;
}
sort(que+1,que+top+1);
for(int i=1;i<=top;i++)if(que[i]!=que[i-1])mp[que[i]]=++cnt;
for(int i=1;i<=n;i++){e[i].a=mp[e[i].a];e[i].b=mp[e[i].b];}
sort(e+1,e+n+1,cmp);
for(int i=1;i<=n;i++)
{
long long flag=ask(1,1,cnt,1,min(e[i].a,e[i].b));
add(1,1,cnt,e[i].a,e[i].b,e[i].w);
upd(1,1,cnt,e[i].a,flag+e[i].w);
}
printf("%lld",tr[1]);
return 0;
}

rp++

[CSP-S模拟测试]:数对(线段树优化DP)的更多相关文章

  1. [CSP-S模拟测试]:bird(线段树优化DP)

    题目传送门(内部题89) 输入格式 第一行两个数$n$和$k$,分别表示小鸟的只数和$R$装弹时间.接下来$n$行,每行两个数$l,r$表示$n$只小鸟初始时的头和尾的$x$坐标. 输出格式 输出一个 ...

  2. 4.11 省选模拟赛 序列 二分 线段树优化dp set优化dp 缩点

    容易想到二分. 看到第一个条件容易想到缩点. 第二个条件自然是分段 然后让总和最小 容易想到dp. 缩点为先:我是采用了取了一个前缀最小值数组 二分+并查集缩点 当然也是可以直接采用 其他的奇奇怪怪的 ...

  3. 「10.29」数列(exgxd)·数对(线段树优化DP)·最小距离(最短路,树上直径思想)

    好久没碰到这么友好乱搞的题了.... A. 数列 考察的是exgcd的相关知识,最后的答案直接O(1)求即可 B. 数对 本来以为是原题,然后仔细看了看发现不是,发现不会只好乱搞骗分了 事实上直接按$ ...

  4. Codeforces Round #426 (Div. 2) D 线段树优化dp

    D. The Bakery time limit per test 2.5 seconds memory limit per test 256 megabytes input standard inp ...

  5. BZOJ2090: [Poi2010]Monotonicity 2【线段树优化DP】

    BZOJ2090: [Poi2010]Monotonicity 2[线段树优化DP] Description 给出N个正整数a[1..N],再给出K个关系符号(>.<或=)s[1..k]. ...

  6. 【bzoj3939】[Usaco2015 Feb]Cow Hopscotch 动态开点线段树优化dp

    题目描述 Just like humans enjoy playing the game of Hopscotch, Farmer John's cows have invented a varian ...

  7. POJ 2376 Cleaning Shifts (线段树优化DP)

    题目大意:给你很多条线段,开头结尾是$[l,r]$,让你覆盖整个区间$[1,T]$,求最少的线段数 题目传送门 线段树优化$DP$裸题.. 先去掉所有能被其他线段包含的线段,这种线段一定不在最优解里 ...

  8. Codeforces 1603D - Artistic Partition(莫反+线段树优化 dp)

    Codeforces 题面传送门 & 洛谷题面传送门 学 whk 时比较无聊开了道题做做发现是道神题( 介绍一种不太一样的做法,不观察出决策单调性也可以做. 首先一个很 trivial 的 o ...

  9. [AGC011F] Train Service Planning [线段树优化dp+思维]

    思路 模意义 这题真tm有意思 我上下楼梯了半天做出来的qwq 首先,考虑到每K分钟有一辆车,那么可以把所有的操作都放到模$K$意义下进行 这时,我们只需要考虑两边的两辆车就好了. 定义一些称呼: 上 ...

  10. 洛谷$P2605\ [ZJOI2010]$基站选址 线段树优化$dp$

    正解:线段树优化$dp$ 解题报告: 传送门$QwQ$ 难受阿,,,本来想做考试题的,我还造了个精妙无比的题面,然后今天讲$dp$的时候被讲到了$kk$ 先考虑暴力$dp$?就设$f_{i,j}$表示 ...

随机推荐

  1. 部署 laravel项目404错误

    1.nginx 下部署出现404错误 (1)打开php.ini中的php_openssl.dll这个扩展: (2)修改nginx 下的站点目录配置文件(我的是配置在vhost.conf)为: loca ...

  2. str 小列题

    name = " aleX leNb "#2.有变量 完成如下操作: 移除 name 变量对应的值两边的空格,并输出处理结果 name=name.strip() print(nam ...

  3. docker无法删除<none>镜像

    .进入root权限 sudo su # 或 sudo -i .停止所有的container(这样才能够删除其中的images): docker stop $(docker ps -a -q) 如果想要 ...

  4. 093、如何用Graylog 管理日志? (2019-05-17 周五)

    参考https://www.cnblogs.com/CloudMan6/p/7821817.html   上节我们已经部署好了 Graylog ,现在学习如何使用他来管理日志.   首先运行测试容器, ...

  5. 25、Python之禅

    要求: 爬取网页你好,蜘蛛侠!中的Python之禅中英文版本,并且打印.   目的: 练习使用selenium爬取动态网页的信息. 练习selenium与BeautifulSoup的搭配使用.     ...

  6. Oracle常用函数(3)

    1)to_char()函数,将日期转换为字符串表示 SQL> select to_char(sysdate,'yyyy"年"mm"月"dd"日& ...

  7. vue - helloVue

    开始学习vue了 1.数据绑定:{{data}} 2.el属性(挂载对象): el:标签任意(例如:#app,.app,app) 3.data:{} :存放数据. <!DOCTYPE html& ...

  8. 使用layer弹窗和layui表单做新增功能

    注释:代码参考http://blog.51cto.com/825272560/1891158,在其修改之上而来,在此感谢! 1.需求:使用layer在弹窗内完成新增,成功后提示并刷新页面(父页面,li ...

  9. JS递归及二叉搜索树的移除节点

    1递归含义:在某时某刻某个条件下调用包含自己的函数 2:注意点:⑴递归过程中一定要加限制条件,要不然会陷入死循环: 死循环eg: function f(someP){ f(somP); } f(4); ...

  10. var与let变量for遍历的问题

    var Liarry = document.getElementsByTagName('li'); /**方法一*描述:自执行函数,将变量当参数传入(闭包的思想,保存当前的值).*/ for (var ...