【BZOJ2794】[Poi2012]Cloakroom

Description

有n件物品,每件物品有三个属性a[i], b[i], c[i] (a[i]<b[i])。
再给出q个询问,每个询问由非负整数m, k, s组成,问是否能够选出某些物品使得:
1. 对于每个选的物品i,满足a[i]<=m且b[i]>m+s。
2. 所有选出物品的c[i]的和正好是k。

Input

第一行一个正整数n (n<=1,000),接下来n行每行三个正整数,分别表示c[i], a[i], b[i] (c[i]<=1,000, 1<=a[i]<b[i]<=10^9)。
下面一行一个正整数q (q<=1,000,000),接下来q行每行三个非负整数m, k, s (1<=m<=10^9, 1<=k<=100,000, 0<=s<=10^9)。

Output

输出q行,每行为TAK (yes)或NIE (no),第i行对应第i此询问的答案。

Sample Input

5
6 2 7
5 4 9
1 2 4
2 5 8
1 3 9
5
2 7 1
2 7 2
3 2 0
5 7 2
4 1 5

Sample Output

TAK
NIE
TAK
TAK
NIE

题解:容易想到离线处理,先将物品和询问都按A从小到大排序,一边将物品加入背包一边处理询问,但是还有一个限制B,怎么搞?

发现我们的背包是一个判断可行性的背包,也就是说里面的数都是0或1,这其实是一种空间的浪费,我们不妨想办法将这些空间利用起来,作为B的限制。

于是令f[i]表示选出C的和为i时,背包中B值最小的那个物品的B值最大是多少(因为B越大越优,所以我们尽可能将B大的装入背包),然后查询的时候只要判断f[i]是否大于m+s就好了。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
int f[1000010];
struct item
{
int A,B,C;
}p[1010];
int n,m,mk;
struct query
{
int l,r,v,org;
}q[1000010];
int ans[1000010];
bool cmp1(item a,item b)
{
return a.A<b.A;
}
bool cmp2(query a,query b)
{
return a.l<b.l;
}
int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-')f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
int main()
{
scanf("%d",&n);
int i,j,k;
for(i=1;i<=n;i++) p[i].C=rd(),p[i].A=rd(),p[i].B=rd();
scanf("%d",&m);
for(i=1;i<=m;i++) q[i].l=rd(),q[i].v=rd(),q[i].r=rd(),mk=max(mk,q[i].v),q[i].org=i;
sort(p+1,p+n+1,cmp1);
sort(q+1,q+m+1,cmp2);
f[0]=1<<30;
for(i=j=1;i<=m;i++)
{
for(;p[j].A<=q[i].l&&j<=n;j++)
{
for(k=mk;k>=p[j].C;k--) f[k]=max(f[k],min(f[k-p[j].C],p[j].B));
}
ans[q[i].org]=(q[i].l+q[i].r<f[q[i].v]);
}
for(i=1;i<=m;i++)
{
if(ans[i]) printf("TAK\n");
else printf("NIE\n");
}
return 0;
}

【BZOJ2794】[Poi2012]Cloakroom 离线+背包的更多相关文章

  1. BZOJ2794[Poi2012]Cloakroom——离线+背包

    题目描述 有n件物品,每件物品有三个属性a[i], b[i], c[i] (a[i]<b[i]).再给出q个询问,每个询问由非负整数m, k, s组成,问是否能够选出某些物品使得:1. 对于每个 ...

  2. bzoj 2794 [Poi2012]Cloakroom 离线+背包

    题目大意 有n件物品,每件物品有三个属性a[i], b[i], c[i] (a[i]<b[i]). 再给出q个询问,每个询问由非负整数m, k, s组成,问是否能够选出某些物品使得: 对于每个选 ...

  3. [BZOJ2794][Poi2012]Cloakroom

    2794: [Poi2012]Cloakroom Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 167  Solved: 119[Submit][St ...

  4. BZOJ 2794 [Poi2012]Cloakroom(离线+背包)

    2794: [Poi2012]Cloakroom Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 406  Solved: 241[Submit][St ...

  5. #13【BZOJ2794】[Poi2012]Cloakroom

    题解: 感觉真是很智障..连这么简单的题都没想出来 一直在想这么做动态背包..发现不会 首先显然我们将询问按照m 序列按照a[i]排序 然后怎么满足b呢 其实很简单啊..只需要记录f[i]表示前面这些 ...

  6. 洛谷P3537 [POI2012]SZA-Cloakroom(背包)

    传送门 蠢了……还以为背包只能用来维护方案数呢……没想到背包这么神奇…… 我们用$dp[i]$表示当$c$的和为$i$时,所有的方案中使得最小的$b$最大时最小的$b$是多少 然后把所有的点按照$a$ ...

  7. POI2012题解

    POI2012题解 这次的完整的\(17\)道题哟. [BZOJ2788][Poi2012]Festival 很显然可以差分约束建图.这里问的是变量最多有多少种不同的取值. 我们知道,在同一个强连通分 ...

  8. dp专题复习

    背包: 1.bzoj2287:[POJ Challenge]消失之物 2.bzoj2748:[HAOI2012]音量调节 3.bzoj2794:[Poi2012]Cloakroom 4.bzoj119 ...

  9. Work at DP

    转载请注明出处:http://www.cnblogs.com/TSHugh/p/8858805.html Prepared: (无notes的波兰题目的notes见我的波兰题目补全计划)BZOJ #3 ...

随机推荐

  1. hibernate学习系列-----(6)hibernate对集合属性的操作之Set集合篇

    先说一段废话吧,本打算每天把所学的知识总结为博客的,但是昨天为什么没有写呢?没有学习吗?No,那是为什么?贪玩,对,这位同学说对了,老实说昨天感觉身体不怎么舒服,大家都知道,这其实就是为自己懒找借口, ...

  2. 倍福TwinCAT(贝福Beckhoff)应用教程13.1 TwinCAT控制松下伺服 NC高级

    本节主要演示了使用自定义函数实现电机的运动(梯形曲线和S曲线都有实现),这里的JOG+和JOG-,针对单个关节实现了PTP的运动(跟贝福的MoveAbsolute功能块实现效果一致),在此没有介绍运动 ...

  3. 微信小程序 - 表单验证插件WxValidate(自定义警告信息形式)

    弹出的形式对于用户来说,总是不太友好的 可能会出现层级问题(只需要设置一下提示的层级即可) WxValidate内置规则 以下代码拷贝即可使用~ wxml <form bindsubmit='s ...

  4. Drawing-Order-Of-meshes-and-sprites

    Sprite 和 Mesh Render 共存 [CanEditMultipleObjects] [CustomEditor(typeof(MeshRenderer))] public class M ...

  5. mac 上多版本python 共存

    Mac上自带了Python2.x的版本,有时需要使用Python3.x版本做开发,但不能删了Python2.x,可能引起系统不稳定,那么就需要安装多个版本的Python. 1.安装Python3.x版 ...

  6. HDU 5094 --Maze【BFS &amp;&amp; 状态压缩】

    Maze Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 100000/100000 K (Java/Others) Total Sub ...

  7. hdu3415 Max Sum of Max-K-sub-sequence 单调队列

    //hdu3415 Max Sum of Max-K-sub-sequence //单调队列 //首先想到了预处理出前缀和利用s[i] - s[j]表示(j,i]段的和 //之后的问题就转换成了求一个 ...

  8. 使用apache POI解析Excel文件

    1. Apache POI简介 Apache POI是Apache软件基金会的开放源码函式库,POI提供API给Java程式对Microsoft Office格式档案读和写的功能. 2. POI结构 ...

  9. linux phpredisAdmin安装步骤

    1:linux安装apache环境, 这一步可以不用安装plsql http://www.cnblogs.com/lufangtao/archive/2012/12/30/2839679.html 2 ...

  10. asp.net+mvc+easyui+sqlite 简单用户系统学习之旅(五)—— 解决tabs选择已建tab显示但datagrid的toolbar消失的问题

    项目需要反复运行,调整bug.发现在选择已有选项卡时,虽然不需要再新建tab,直接跳转到已有的tab上,但问题是显示的datagrid有事会出现toolbar消失的问题.网上也有不少同学出现类似问题, ...