今天我们介绍图像处理邻域中比较常用的一种方法,image pyramid, 也叫图像金字塔。就是将图像进行一层一层的下采样,图像金字塔是为了构建图像的多尺度,让模型能够更好的适应图像的尺度变化,图像金字塔可以广泛应用于图像识别,目标检测,还有光流配准,块匹配都能看到它的身影。图像金字塔主要有两种,一种是高斯金字塔,gaussian pyramid,另外一种是拉普拉斯金字塔,Laplacian Pyramids。

(3)G0=IG1=Down(G0∗F)G2=Down(G1∗F)⋅⋅⋅GN=Down(GN−1∗F)" role="presentation">G0=IG1=Down(G0∗F)G2=Down(G1∗F)⋅⋅⋅GN=Down(GN−1∗F)(3)(3)G0=IG1=Down(G0∗F)G2=Down(G1∗F)⋅⋅⋅GN=Down(GN−1∗F)

Gk" role="presentation" style="position: relative;">GkGk 表示的每一层金字塔中的图像,F" role="presentation" style="position: relative;">FF 表示高斯卷积核,∗" role="presentation" style="position: relative;">∗∗ 表示卷积操作,Down" role="presentation" style="position: relative;">DownDown 表示下采样,上面的表达式,就可以构建一个图像金字塔。这个在 Open-CV 中有现成的函数,下面给出一段代码,看看高斯金字塔的构建:

    import numpy as np
import matplotlib.pyplot as plt A = cv2.imread('D:/Python_Code/Test_img/2.jpg')
row, col, dpt = A.shape
pyr_level = 4
# generate Gaussian pyramid for A
G = A.copy()
gpA = [G]
for i in range(pyr_level):
G = cv2.pyrDown(G)
gpA.append(G) G = np.zeros([row, col, dpt], dtype='uint8') rowX2 = row // 2
colX2 = col // 2
G[:rowX2, :colX2, :] = gpA[1]
rowX4 = rowX2 // 2
colX4 = colX2 // 2
G[rowX2:rowX2+rowX4, colX2:colX2+colX4, :] = gpA[2]
G[:rowX4, colX2:colX2+colX4, :] = gpA[2]
rowX8 = rowX4 // 2
colX8 = colX4 // 2
G[rowX2+rowX4:rowX2+rowX4+rowX8, colX2+colX4:colX2+colX4+colX8, :] = gpA[3]
G[ :rowX8, colX2+colX4:colX2+colX4+colX8, :] = gpA[3]
cv2.imshow("gau_pyr", G)

下面给出一个效果图:

下面看看,拉普拉斯金字塔,拉普拉斯金字塔其实是根据高斯金字塔计算得来的:

(4)L0=G0−Up(G1∗F)L1=G1−Up(G2∗F)L2=G2−Up(G3∗F)⋅⋅⋅LN−1=GN−1−Up(GN∗F)LN=GN" role="presentation">L0=G0−Up(G1∗F)L1=G1−Up(G2∗F)L2=G2−Up(G3∗F)⋅⋅⋅LN−1=GN−1−Up(GN∗F)LN=GN(4)(4)L0=G0−Up(G1∗F)L1=G1−Up(G2∗F)L2=G2−Up(G3∗F)⋅⋅⋅LN−1=GN−1−Up(GN∗F)LN=GN

利用拉普拉斯金字塔,可以实现图像的重建,根据上面的表达式,我们可以得到:

(6)GN−1≈LN−1+Up(LN)GN−2≈LN−2+Up(GN−1)⋅⋅⋅G1≈L1+Up(G2)G0≈L0+Up(G1)" role="presentation">GN−1≈LN−1+Up(LN)GN−2≈LN−2+Up(GN−1)⋅⋅⋅G1≈L1+Up(G2)G0≈L0+Up(G1)(6)(6)GN−1≈LN−1+Up(LN)GN−2≈LN−2+Up(GN−1)⋅⋅⋅G1≈L1+Up(G2)G0≈L0+Up(G1)

也就是说,把拉普拉斯金字塔层层上采样,再累加,就可以重建出最初的图像。下面给出一段代码:

    import cv2
import numpy as np
A = cv2.imread('D:/Python_Code/Test_img/2.jpg') pyr_level = 4
# generate Gaussian pyramid for A
G = A.copy()
gpA = [G]
for i in range(pyr_level):
G = cv2.pyrDown(G)
gpA.append(G) # generate Laplacian Pyramid for A
lpA = [gpA[pyr_level -1 ]]
for i in range(pyr_level - 1,0,-1):
GE = cv2.pyrUp(gpA[i])
L = cv2.subtract(gpA[i-1],GE)
lpA.append(L) # Now add left and right halves of images in each level
LS = []
for la,lb in zip(lpA,lpB):
rows,cols,dpt = la.shape
ls = la
LS.append(ls) # now reconstruct
ls_ = LS[0]
for i in range(1,pyr_level):
ls_ = cv2.pyrUp(ls_)
ls_ = cv2.add(ls_, LS[i]) cv2.imwrite('Pyramid_blending2.jpg',ls_)

原图:

重建后的图:

Image Pyramid的更多相关文章

  1. CF 676B Pyramid of Glasses[模拟]

    B. Pyramid of Glasses time limit per test 1 second memory limit per test 256 megabytes input standar ...

  2. Spatial pyramid pooling (SPP)-net (空间金字塔池化)笔记(转)

    在学习r-cnn系列时,一直看到SPP-net的身影,许多有疑问的地方在这篇论文里找到了答案. 论文:Spatial Pyramid Pooling in Deep Convolutional Net ...

  3. 论文笔记之:Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks

    Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks NIPS 2015  摘要:本文提出一种 ...

  4. codeforces 676B B. Pyramid of Glasses(模拟)

    题目链接: B. Pyramid of Glasses time limit per test 1 second memory limit per test 256 megabytes input s ...

  5. hdu 5432 Pyramid Split 二分

    Pyramid Split Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://bestcoder.hdu.edu.cn/contests/conte ...

  6. Spatial Pyramid Matching 小结

    Spatial Pyramid Matching 小结 稀疏编码系列: (一)----Spatial Pyramid 小结 (二)----图像的稀疏表示——ScSPM和LLC的总结 (三)----理解 ...

  7. pyramid的第一个项目

    1,安装pyramid --在次之前最好先安装python virtualenv --python virtualenv ---激活方式pyenv activate pip install pyram ...

  8. OpenGL蓝宝书第五章代码勘误以及惯性坐标系去解释模型变换:Pyramid.cpp

    假设你也发现依照教程代码完毕贴图时,你会底面的坐标和寻常顶点坐标正负相反,比方-1.0f, -1.0f, -1.0f这个顶点相应的却是世界坐标中1.0f,-1.0f,1.0f 问题到底出如今哪里? 原 ...

  9. Golden Pyramid

    Golden Pyramid Our Robo-Trio need to train for future journeys and treasure hunts. Stephan has built ...

  10. hdu 5432 Pyramid Split(二分搜索)

    Problem Description Xiao Ming is a citizen who's good at playing,he has lot's of gold cones which ha ...

随机推荐

  1. easyPieChart 使用小记

    在使用的时候本来想在获取数据的时候,再放入percent值,但死活不出来进度条条了,只能无奈设置默认100.求教有木正确方式? $("#demo-pie-1").attr(&quo ...

  2. 分层架构下的纯JDBC事务控制简单解决方案【转】

    http://blog.csdn.net/qjyong/article/details/5464835 对目前的JavaEE企业应用开发来说,基本都会采用分层的架构, 这样可以分散关注.松散耦合.逻辑 ...

  3. Vue:实践学习笔记(3)——组件使用

    Vue:实践学习笔记(3)——组件使用 全局注册 1.注册组件 Vue.component('my-component',{ //选项 }) 说明:my-component就是注册的组件自定义的标签名 ...

  4. ZOJ 3959 Problem Preparation 【水】

    题目链接 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3959 AC代码 #include <cstdio> ...

  5. linux ip别名和辅助ip地址

    转:https://blog.csdn.net/xiewen99/article/details/54729112?utm_source=itdadao&utm_medium=referral ...

  6. node中session存储与销毁,及session的生命周期

    1.首先在使用session之前需要先配置session的过期时间等,在入口文件app.js中 app.use(express.session({ cookie: { maxAge: config.g ...

  7. 斯坦福机器学习视频笔记 Week9 异常检测和高斯混合模型 Anomaly Detection

    异常检测,广泛用于欺诈检测(例如“此信用卡被盗?”). 给定大量的数据点,我们有时可能想要找出哪些与平均值有显着差异. 例如,在制造中,我们可能想要检测缺陷或异常. 我们展示了如何使用高斯分布来建模数 ...

  8. js学习笔记1(变量、作用域、内存)

    写在前面,舍弃叽叽歪歪,只做学习笔记,认真踏实. 学习书籍:javascript高级程序设计3版. 章节4.1 基本类型和引用类型 1.基本类型在内存中占据固定大小的空间,所以保存在栈内存中. 2.从 ...

  9. poj 1703 Find them, Catch them 【并查集 新写法的思路】

    题目地址:http://poj.org/problem?id=1703 Sample Input 1 5 5 A 1 2 D 1 2 A 1 2 D 2 4 A 1 4 Sample Output N ...

  10. 常用java开发工具快捷键

    在这里列举一些开发中常用的快捷键 常用的idea的快捷键: 1.删除当前行:Ctrl+X 2.格式化代码:Ctrl+Alt+L 3.查看本页里面的内容:Ctrl+F 4.查看类的继承方式:Ctrl+H ...