1051: [HAOI2006]受欢迎的牛

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 8161  Solved: 4460

Description

每一头牛的愿望就是变成一头最受欢迎的牛。现在有N头牛,给你M对整数(A,B),表示牛A认为牛B受欢迎。 这种关系是具有传递性的,如果A认为B受欢迎,B认为C受欢迎,那么牛A也认为牛C受欢迎。你的任务是求出有多少头牛被所有的牛认为是受欢迎的。

Input

第一行两个数N,M。 接下来M行,每行两个数A,B,意思是A认为B是受欢迎的(给出的信息有可能重复,即有可能出现多个A,B)

Output

一个数,即有多少头牛被所有的牛认为是受欢迎的。

Sample Input

3 3

1 2

2 1

2 3

Sample Output

1

HINT

100%的数据N<=10000,M<=50000
 
题解:
这题一开始我用并查集乱搞了一下,结果搞出来了...
如果一头牛受欢迎,那么他所有喜欢的牛都是被所有牛认为受欢迎的。那么我们关键就是找出第一头被所有牛认为受欢迎的牛。
在合并集合的时候用sum数组维护喜欢父亲结点的个数,当个数等于n时我们就找到一头牛了。
之后再用个bfs来求就好了。
 
代码如下:
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <map>
#include <queue>
using namespace std; const int N = ,M = ;
int n,m,tot;
int head[N],f[N],sum[N],vis[N];
map<int,map<int,int> > mp;
struct Edge{
int u,v,next ;
}e[M];
void adde(int u,int v){
e[++tot].u=u;e[tot].v=v;
e[tot].next=head[u];
head[u]=tot;
}
int find(int x){
return f[x]==x ? f[x] : f[x]=find(f[x]);
}
int main(){
cin>>n>>m;
int st=;
memset(head,-,sizeof(head));
for(int i=;i<=N-;i++) f[i]=i,sum[i]=;
for(int i=,u,v;i<=m;i++){
scanf("%d%d",&u,&v);
if(!mp[u][v]){
mp[u][v]=;
adde(u,v);
int fx=find(u),fy=find(v);
if(fx!=fy){
f[fx]=fy;
sum[fy]+=sum[fx];
if(sum[fy]==n) st=fy;
}
}
}
int cnt =;
if(!st)puts("");
else{
queue<int> q;
q.push(st);vis[st]=;
while(!q.empty()){
int u=q.front();q.pop();
for(int i=head[u];i!=-;i=e[i].next){
int v=e[i].v;
if(!vis[v]){
vis[v]=;
q.push(v);
cnt++;
}
}
}
printf("%d\n",cnt);
}
return ;
}

再来说一下tarjan。

先用tarjan缩点,然后重新构图,找到出度为0的点那么这里面所有的牛都是被所有牛认为受欢迎的。

注意一下构图后不连通的情况就好了。

代码如下:

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <stack>
using namespace std; const int N = ,M = ;
int n,m,tot,num,T;
int head[N],dfn[N],low[N],vis[N],scc[N];
struct Edge{
int u,v,next ;
}e[M];
void adde(int u,int v){
e[++tot].u=u;e[tot].v=v;
e[tot].next=head[u];head[u]=tot ;
}
stack <int> s;
void Tanjan(int u){
dfn[u]=low[u]=++T;vis[u]=;
s.push(u);
for(int i=head[u];i!=-;i=e[i].next){
int v=e[i].v;
if(!vis[v]){
Tanjan(v);
low[u]=min(low[u],low[v]);
}else{
low[u]=min(low[u],dfn[v]);
}
}
if(low[u]==dfn[u]){
num++;int now;
do{
now = s.top();s.pop();
scc[now]=num;
}while(!s.empty() && now!=u);
}
}
int main(){
scanf("%d%d",&n,&m);
memset(head,-,sizeof(head));
for(int i=,u,v;i<=m;i++){
scanf("%d%d",&u,&v);
adde(u,v);
}
for(int i=;i<=n;i++){
if(!vis[i]) Tanjan(i);
}
int out[N]={},in[N]={};
for(int u=;u<=n;u++){
for(int i=head[u];i!=-;i=e[i].next){
int v=e[i].v;
if(scc[u]!=scc[v]){
out[scc[u]]++;
in[scc[v]]++;
}
}
}
int cnt=,ans=,tag;
for(int i=;i<=num;i++) if(!out[i]) cnt++,tag=i;
if(cnt==){
for(int i=;i<=n;i++) if(scc[i]==tag) ans++;
printf("%d",ans);
}else puts("");
return ;
}

BZOJ1051:受欢迎的牛(并查集 / Tarjan)的更多相关文章

  1. BZOJ1051 受欢迎的牛

    http://www.lydsy.com/JudgeOnline/problem.php?id=1051 Description 每一头牛的愿望就是变成一头最受欢迎的牛.现在有N头牛,给你M对整数(A ...

  2. p2341&bzoj1051 受欢迎的牛

    传送门(洛谷) 传送门(bzoj) 题目 每一头牛的愿望就是变成一头最受欢迎的牛.现在有N头牛,给你M对整数(A,B),表示牛A认为牛B受欢迎. 这 种关系是具有传递性的,如果A认为B受欢迎,B认为C ...

  3. bzoj1051受欢迎的牛(Tarjan)

    1051: [HAOI2006]受欢迎的牛 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4776  Solved: 2542 Description ...

  4. HDU ACM 2586 How far away ?LCA-&gt;并查集+Tarjan(离线)算法

    题意:一个村子有n个房子,他们用n-1条路连接起来,每两个房子之间的距离为w.有m次询问,每次询问房子a,b之间的距离是多少. 分析:近期公共祖先问题,建一棵树,求出每一点i到树根的距离d[i],每次 ...

  5. 关于并查集的路径压缩(Path Compress)优化

    之前在CSDN看到一篇很受欢迎的讲解并查集的博文,其中自然用到了路径压缩: int pre[1000]; int find(int x){ int root = x; while(pre[root]! ...

  6. 【bzoj1051】 [HAOI2006]受欢迎的牛 tarjan缩点判出度算点数

    [bzoj1051] [HAOI2006]受欢迎的牛 2014年1月8日7450 Description 每一头牛的愿望就是变成一头最受欢迎的牛.现在有N头牛,给你M对整数(A,B),表示牛A认为牛B ...

  7. 【并查集缩点+tarjan无向图求桥】Where are you @牛客练习赛32 D

    目录 [并查集缩点+tarjan无向图求桥]Where are you @牛客练习赛32 D PROBLEM SOLUTION CODE [并查集缩点+tarjan无向图求桥]Where are yo ...

  8. 【BZOJ1051】[HAOI2006]受欢迎的牛

    [BZOJ1051][HAOI2006]受欢迎的牛 题面 bzoj 洛谷 题解 假如\(A\)喜欢\(B\)就连一条\(A\)到\(B\)的边 然后缩点,如果图不连通就\(Impossible\) 否 ...

  9. 牛客练习赛16 C 任意点【并查集/DFS/建图模型】

    链接:https://www.nowcoder.com/acm/contest/84/C 来源:牛客网 题目描述 平面上有若干个点,从每个点出发,你可以往东南西北任意方向走,直到碰到另一个点,然后才可 ...

随机推荐

  1. Matplotlib 子图的创建

    在matplotlib中,整个图像为一个Figure对象 在Figure对象中可以包含一个或者多个Axes对象  每个Axes对象相当于一个子图了 每个Axes(ax)对象都是一个拥有自己坐标系统的绘 ...

  2. linux io 学习笔记(03)---共享内存,信号灯,消息队列

    system V IPC 1)消息队列 2)共享内存 3)信号灯(信号量集) 1.消息队列. ipcs -q 查看系统中使用消息队列的情况 ipcrm -q +msqid 删除消息队列 消息队列工作原 ...

  3. 形象的理解Strong和Weak

    Strong Weak

  4. Kotlin 1 函数

    #2 函数 函数声明和平时我见到的有点不太一样,使用关键字fun来声明.(感觉好欢乐的样子···O(∩_∩)O~~) 下面的示例,简单的声明了一个函数: // 这是函数声明 fun this_is_a ...

  5. 第六篇 常用请求协议之post put patch 总结

    [转]https://blog.csdn.net/sshfl_csdn     感谢愿意总结分享的人,thanks idempotent 幂等的 如果一个方法重复执行多次,产生的效果是一样的,那就是i ...

  6. cocos2d-x 粒子系统

    粒子系统是模拟自然界中的一些粒子的物理运动的效果,如烟雾,下雪,下雨,火,爆炸等. 粒子发射模式 粒子系统的发射模式的时候有两种方式:重力模式和半径模式. 粒子系统属性  属性名  行为  模式  d ...

  7. tomcat web.log 系统日志记录文件过大问题修改

    目前各系统都是记录所有的日志,产生日志文件太大,按照如下设置修改log4j.properties文件:其中橙色部分为系统名称,例如water-scada系统,名称可以为scada. #Sun Jun ...

  8. UVA 1085 House of Cards(对抗搜索)

    Description   Axel and Birgit like to play a card game in which they build a house of cards, gaining ...

  9. Android Studio的初体验

    在机缘巧合之下遇到了安卓开发,接触了Android Studio开始了漫长的改bug的道路,以下为简易版心酸历程 首先我需要成功安装Android Studio,由于我过于叛逆以及为了避免出错于是从一 ...

  10. HDU 2135 Rolling table

    http://acm.hdu.edu.cn/showproblem.php?pid=2135 Problem Description After the 32nd ACM/ICPC regional ...