这道题明显是异或方程组,然而解不一定唯一他要的是众多解中解为1的数的最小值,这个时候我们就需要dfs了我们dfs的时候就是枚举其有不确定解的数上选0或1从而推知其他解,由于我们dfs的时候先0后1,虽然我们选出的0多最后得到的0不一定多,但至少加上小小的剪枝(例如如果剩下的解全为0也不必已知解多就退出),之后他无法将我们的时间复杂度搞到一个很困窘的地步,因为他在不确定解小于25时卡不到我们,但是一旦多了剪枝的效果就大了。

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <bitset>
#include <iostream>
const int N=;
const int Inf=0x3f3f3f3f;
std::bitset<N> a[N],d[N],temp;
int ans=Inf,n,m,b[N];
bool god;
void gauss(){
for(int i=,k=;k<=n;i++,k++){
int t=;
for(int j=i;j<=n;j++)
if(a[j][k]){t=j;break;}
if(!t){i--;continue;}
temp=a[t],a[t]=a[i],a[i]=temp;
for(int j=i+;j<=n;j++)
if(a[j][k])a[j]^=a[i];
}
for(int i=,now=;i<=n;i++){
while(now<=n&&a[i][now]==)now++;
if(now>n)break;
d[now]=a[i];
}
}
void dfs(int now,int have){
if(have>=ans)return;
if(now==){ans=have;return;}
if(d[now][now]){
b[now]=d[now][n+];
for(int i=now+;i<=n;i++)b[now]^=d[now][i]&b[i];
dfs(now-,have+b[now]);
return;
}
b[now]=,dfs(now-,have);
b[now]=,dfs(now-,have+);
}
int main(){
scanf("%d%d",&n,&m);
for(int i=,x,y;i<=m;i++)
scanf("%d%d",&x,&y),a[x][y]=,a[y][x]=;
for(int i=;i<=n;i++)a[i][n+]=,a[i][i]=;
gauss(),dfs(n,),printf("%d",ans);
return ;
}

【BZOJ 1770 】 [Usaco2009 Nov]lights 燈 dfs+异或方程组的更多相关文章

  1. BZOJ 1770: [Usaco2009 Nov]lights 燈( 高斯消元 )

    高斯消元解xor方程组...暴搜自由元+最优性剪枝 -------------------------------------------------------------------------- ...

  2. bzoj 1770: [Usaco2009 Nov]lights 燈【高斯消元+dfs】

    参考:https://blog.csdn.net/qq_34564984/article/details/53843777 可能背了假的板子-- 对于每个灯建立方程:与它相邻的灯的开关次数的异或和为1 ...

  3. BZOJ 1770: [Usaco2009 Nov]lights 燈

    Description 一个图,对一个点进行操作会改变这个点及其相邻的点的状态,问全部变成黑色至少需要几次.数据保证有解. Sol Meet in middle. 我一开始写个高斯消元,发现有两个点过 ...

  4. 【高斯消元】BZOJ 1770: [Usaco2009 Nov]lights 燈

    Description 貝希和她的閨密們在她們的牛棚中玩遊戲.但是天不從人願,突然,牛棚的電源跳閘了,所有的燈都被關閉了.貝希是一個很膽小的女生,在伸手不見拇指的無盡的黑暗中,她感到驚恐,痛苦與絕望. ...

  5. BZOJ 1770: [Usaco2009 Nov]lights 燈 [高斯消元XOR 搜索]

    题意: 经典灯问题,求最少次数 本题数据不水,必须要暴搜自由元的取值啦 想了好久 然而我看到网上的程序都没有用记录now的做法,那样做遇到自由元应该可能会丢解吧...? 我的做法是把自由元保存下来,枚 ...

  6. 【BZOJ】1770 [Usaco2009 Nov]lights 燈

    [算法]高斯消元-异或方程组 [题解]良心简中题意 首先开关顺序没有意义. 然后就是每个点选或不选使得最后得到全部灯开启. 也就是我们需要一种确定的方案,这种方案使每盏灯都是开启的. 异或中1可以完美 ...

  7. bzoj1770: [Usaco2009 Nov]lights 燈(折半搜索)

    1770: [Usaco2009 Nov]lights 燈 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1153  Solved: 564[Submi ...

  8. bzoj千题计划187:bzoj1770: [Usaco2009 Nov]lights 燈 (高斯消元解异或方程组+枚举自由元)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1770 a[i][j] 表示i对j有影响 高斯消元解异或方程组 然后dfs枚举自由元确定最优解 #in ...

  9. 【dfs】【高斯消元】【异或方程组】bzoj1770 [Usaco2009 Nov]lights 燈 / bzoj2466 [中山市选2009]树

    经典的开关灯问题. 高斯消元后矩阵对角线B[i][i]若是0,则第i个未知数是自由元(S个),它们可以任意取值,而让非自由元顺应它们,得到2S组解. 枚举自由元取0/1,最终得到最优解. 不知为何正着 ...

随机推荐

  1. Centos7 搭建 hadoop3.1.1 集群教程

    配置环境要求: Centos7 jdk 8 Vmware 14 pro hadoop 3.1.1 Hadoop下载 安装4台虚拟机,如图所示 克隆之后需要更改网卡选项,ip,mac地址,uuid 重启 ...

  2. stm32+lwip(一):使用STM32CubeMX生成项目

    我是卓波,很高兴你来看我的博客. 系列文章: stm32+lwip(一):使用STM32CubeMX生成项目 stm32+lwip(二):UDP测试 stm32+lwip(三):TCP测试 stm32 ...

  3. Element-ui学习使用

    这是我使用Element-ui的布局,排布的一个界面,原本我是使用WinfowsForm来做的一个摄像头注册以及查询的小工具,目前我关注前后端的开发,所以就想着能不能把这么个小工具,我用前后端的形式开 ...

  4. git的基本操作总结

    参考链接 https://blog.csdn.net/u012661010/article/details/73433872 https://blog.csdn.net/shj_php/article ...

  5. Delphi中Templates代码模板添加注意事项

    今天用Delphi中的代码模板添加一段代码,结果就是有问题,多次测试后,发现是编码需要注意. <?xml version="1.0" encoding="GB231 ...

  6. 用ServiceStack操作使用redis的问题

    最近在学习Redis,查阅网上很多资料后使用SericeStack连接redis.在nuget中下载ServiceStack.Redis,主要使用到四个dll 但是运行之后会出现一堆奇怪问题:没有实现 ...

  7. 用Kettle的一套流程完成对整个数据库迁移 费元星

    原地址 :http://ainidehsj.iteye.com/blog/1735434 需求: 1.你是否遇到了需要将mysql数据库中的所有表与数据迁移到Oracle. 2.你是否还在使用kett ...

  8. Jmeter非GUI命令参数说明

    查看帮助 -h, --help print usage information and exit 查看版本 -v, --version print the version information an ...

  9. (转)简述47种Shader Map的渲染原理与制作方法

    在Shader中会使用各种不同图参与渲染,所以简单地总结下各种图的渲染原理.制作方法,最后面几种是程序生成图. 1. Albedo 2. Diffuse(Photographic) 从上图可以看出来, ...

  10. LightGBM的算法介绍

    LightGBM算法的特别之处 自从微软推出了LightGBM,其在工业界表现的越来越好,很多比赛的Top选手也掏出LightGBM上分.所以,本文介绍下LightGBM的特别之处. LightGBM ...