Refer:http://python.jobbole.com/81215/

本文参考了博乐在线的这篇文章,在其基础上加了一些自己的理解。其原文是一篇英文的博客,讲的通俗易懂。

本文通过一个简单的例子:预测房价,来探讨怎么用python做一元线性回归分析。

1. 预测一下房价

房价是一个很火的话题,现在我们拿到一组数据,是房子的大小(平方英尺)和房价(美元)之间的对应关系,见下表(csv数据文件):

从中可以大致看出,房价和房子大小之间是有相关关系的,且可以大致看出来是线性相关关系。为了简单起见,这里理想化地假设房价只和房子大小有关,那我们在这组数据的基础上,怎样预测任意大小的房子的房价呢?答案是用一元回归分析。

2. 一元回归分析是啥

讲到一元回归分析很多人应该不陌生,在初中还是高中的数学课程中肯定有学过,即对于一组自变量x和对应的一组因变量y的值,x和y呈线性相关关系,现在让你求出这个线性关系的直线方程,就是这样一个问题。

记得当时用的方法叫:最小二乘法,这里不再细讲最小二乘法的详细内容,其主要思想就是找到这样一条直线,使得所有已知点到这条直线的距离的和最短,那么这样一条直线理论上就应该是和实际数据拟合度最高的直线了。

下面我们将开篇提出的问题中的房价和房子的大小之间的关系用一个线性方程来表示:

\[h_\theta(x) = \theta_0 + \theta_1x
\]

表示大小为x(单位:平方英尺)的房子的价格为\(h_\theta(x)\),其中\(\theta_0\)是直线的截距,\(\theta_1\)为回归系数,即直线的斜率。

我们要计算的东西其实就是\(\theta_0\)和\(\theta_1\)这两个系数,因为只要这两个系数确定了,那直线的方程也就确定了,然后就可以把要预测的x值代入方程来求得对应的\(h_\theta\)值了。

3. 上代码

注:用到的3个库都可以用pip命令进行安装。

#!/usr/bin/python
# coding:utf-8
# python一元回归分析实例:预测房子价格
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.linear_model import LinearRegression # 从csv文件中读取数据,分别为:X列表和对应的Y列表
def get_data(file_name):
# 1. 用pandas读取csv
data = pd.read_csv(file_name) # 2. 构造X列表和Y列表
X_parameter = []
Y_parameter = []
for single_square_feet,single_price_value in zip(data['square_feet'],data['price']):
X_parameter.append([float(single_square_feet)])
Y_parameter.append(float(single_price_value)) return X_parameter,Y_parameter # 线性回归分析,其中predict_square_feet为要预测的平方英尺数,函数返回对应的房价
def linear_model_main(X_parameter,Y_parameter,predict_square_feet):
# 1. 构造回归对象
regr = LinearRegression()
regr.fit(X_parameter,Y_parameter) # 2. 获取预测值
predict_outcome = regr.predict(predict_square_feet) # 3. 构造返回字典
predictions = {}
# 3.1 截距值
predictions['intercept'] = regr.intercept_
# 3.2 回归系数(斜率值)
predictions['coefficient'] = regr.coef_
# 3.3 预测值
predictions['predict_value'] = predict_outcome return predictions # 绘出图像
def show_linear_line(X_parameter,Y_parameter):
# 1. 构造回归对象
regr = LinearRegression()
regr.fit(X_parameter,Y_parameter) # 2. 绘出已知数据散点图
plt.scatter(X_parameter,Y_parameter,color = 'blue') # 3. 绘出预测直线
plt.plot(X_parameter,regr.predict(X_parameter),color = 'red',linewidth = 4) plt.title('Predict the house price')
plt.xlabel('square feet')
plt.ylabel('price')
plt.show() def main():
# 1. 读取数据
X,Y = get_data('./price_info.csv') # 2. 获取预测值,在这里我们预测700平方英尺大小的房子的房价
predict_square_feet = 700
result = linear_model_main(X,Y,predict_square_feet)
for key,value in result.items():
print '{0}:{1}'.format(key,value) # 3. 绘图
show_linear_line(X,Y) if __name__ == '__main__':
main()

【输出结果】

coefficient:[ 28.77659574]

predict_value:[ 21915.42553191]

intercept:1771.80851064

4. 总结与不足

上述分析过程,有两点不足:

(1)数据量太少,预测的误差可能较大;

(2)影响房价不止房子大小这一个因素,肯定还有很多其他因素,这里没有把其他因素考虑进去,导致预测的结果也是不准确的。既然有一元回归分析,那肯定也有多元回归分析,留到以后再讲。

但是我们也看到可以用python的一些科学计算和数据分析的库自动的帮我们完成以前需要繁琐计算的过程,更加灵活高效,特别是面对上万上百万规模的数据的时候。

随机推荐

  1. centos7.4 install ss-qt5

    一切都是为了FQ,哦,说错了,是***-- 参考官网安装指南 1.新建repo文件 vim /etc//yum.repos.d/shadowssocks.repo 2.在文件中输入以下内容: [lib ...

  2. 以css为例谈设计模式

    什么是设计模式? 曾有人调侃,设计模式是工程师用于跟别人显摆的,显得高大上:也曾有人这么说,不是设计模式没用,是你还没有到能懂它,会用它的时候. 先来看一下比较官方的解释:"设计模式(Des ...

  3. bat脚本批处理打war打包

    @echo =========================================== @echo 描述:打包脚本 @echo 作者:霍建国 @echo 日期:2018-03-13 @ec ...

  4. Spring MVC参数方法名称解析器

    以下示例显示如何使用Spring Web MVC框架来实现多动作控制器的参数方法名称解析器. MultiActionController类可在单个控制器中分别映射多个URL到对应的方法. 所下所示配置 ...

  5. CodeForces 450A 队列

    Description There are n children in Jzzhu's school. Jzzhu is going to give some candies to them. Let ...

  6. Python 使用MySQL

    在导入MySQLdb之前,需要安装MySQLdb模块.使用pip安装,命令如下: pip install MySQL-python 安装成功后,导入MySQLdb模块 import MySQLdb 连 ...

  7. linux之shell常用命令介绍

    一.cd    切换目录 cd /etc  切换到/etc目录下              cd ~       切换到主目录下 cd  ..      返回上级目录                  ...

  8. .net framework 4.5 在Visual studio 2015中丢失

    解决办法:从另一台C:\Program Files(x86)\Reference Assemblies\Microsoft\.NetFramework 成功的环境中copy .net4.5 文件夹到错 ...

  9. 1020 逆序排列(DP)

    1020 逆序排列 基准时间限制:2 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序 ...

  10. mongodb基础操作

    查询选择器>db.customers.find({age:{$lt:102}})查询age小于102的数据$lte表示小于或等于$gt表示大于$gte表示大于或等于>db.customer ...