在TCP/IP协议中,TCP协议提供可靠的连接服务,采用三次握手建立一个连接。

第一次握手:建立连接时,客户端发送syn包(syn=j)到服务器,并进入SYN_SEND状态,等待服务器确认;

第二次握手:服务器收到syn包,必须确认客户的SYN(ack=j+1),同时自己也发送一个SYN包(syn=k),即SYN+ACK包,此时服务器 进入SYN_RECV状态;

第三次握手:客户端收到服务器的SYN+ACK包,向服务器发送确认包ACK(ack=k+1),此包发送完毕,客户端和服务器进入 ESTABLISHED状态,完成三次握手。

通过这样的三次握手,客户端与服务端建立起可靠的双工的连接,开始传送数据。

三次握手的最主要目的是保证连接是双工的,可靠更多的是通过重传机制来保证的。

但是为什么一定要进行三次握手来保证连接是双工的呢,一次不行么?两次不行么?我们举一个现实生活中两个人进行语言沟通的例子来模拟三次握手。

第一次对话:

老婆让甲出去打酱油,半路碰到一个朋友乙,甲问了一句:哥们你吃饭了么?

结果乙带着耳机听歌呢,根本没听到,没反应。甲心里想:跟你说话也没个音,不跟你说了,沟通失败。说明乙接受不到甲传过来的信息的情况下沟通肯定是失败的。

如果乙听到了甲说的话,那么第一次对话成功,接下来进行第二次对话。

第二次对话:

乙听到了甲说的话,但是他是老外,中文不好,不知道甲说的啥意思也不知道怎样回答,于是随便回答了一句学过的中文 :我去厕所了。甲一听立刻笑喷了,“去厕所吃饭”?道不同不相为谋,离你远点吧,沟通失败。说明乙无法做出正确应答的情况下沟通失败。

如果乙听到了甲的话,做出了正确的应答,并且还进行了反问:我吃饭了,你呢?那么第二次握手成功。

通过前两次对话证明了乙能够听懂甲说的话,并且能做出正确的应答。接下来进行第三次对话。

第三次对话:

甲刚和乙打了个招呼,突然老婆喊他,“你个死鬼,打个酱油咋这么半天,看我回家咋收拾你”,甲是个妻管严,听完吓得二话不说就跑回家了,把乙自己晾那了。乙心想:这什么人啊,得,我也回家吧,沟通失败。说明甲无法做出应答的情况下沟通失败。

如果甲也做出了正确的应答:我也吃了。那么第三次对话成功,两人已经建立起了顺畅的沟通渠道,接下来开始持续的聊天。

通过第二次和第三次的对话证明了甲能够听懂乙说的话,并且能做出正确的应答。

可见,两个人进行有效的语言沟通,这三次握手的过程是必须的。

同理对于TCP为什么需要进行三次握手我们可以一样的理解:

下面是个专业的解释:

TCP(Transmission Control Protocol) 传输控制协议

TCP是主机对主机层的传输控制协议,提供可靠的连接服务,采用三次握手确认建立一个连接:

位码即tcp标志位,有6种标示:SYN(synchronous建立联机) ACK(acknowledgement 确认) PSH(push传送) FIN(finish结束) RST(reset重置) URG(urgent紧急)

Sequence number(顺序号码) Acknowledge number(确认号码)

第一次握手:主机A发送位码为syn=1,随机产生seq number=1234567的数据包到服务器,主机B由SYN=1知道,A要求建立联机;

第二次握手:主机B收到请求后要确认联机信息,向A发送ack number=(主机A的seq+1),syn=1,ack=1,随机产生seq=7654321的包

第三次握手:主机A收到后检查ack number是否正确,即第一次发送的seq number+1,以及位码ack是否为1,若正确,主机A会再发送ack number=(主机B的seq+1),ack=1,主机B收到后确认seq值与ack=1则连接建立成功。

完成三次握手,主机A与主机B开始传送数据。

在TCP/IP协议中,TCP协议提供可靠的连接服务,采用三次握手建立一个连接。
第一次握手:建立连接时,客户端发送syn包(syn=j)到服务器,并进入SYN_SEND状态,等待服务器确认;
第二次握手:服务器收到syn包,必须确认客户的SYN(ack=j+1),同时自己也发送一个SYN包(syn=k),即SYN+ACK包,此时服务器进入SYN_RECV状态; 第三次握手:客户端收到服务器的SYN+ACK包,向服务器发送确认包ACK(ack=k+1),此包发送完毕,客户端和服务器进入ESTABLISHED状态,完成三次握手。 完成三次握手,客户端与服务器开始传送数据.

实例:

IP 192.168.1.116.3337 > 192.168.1.123.7788: S 3626544836:3626544836
IP 192.168.1.123.7788 > 192.168.1.116.3337: S 1739326486:1739326486 ack 3626544837
IP 192.168.1.116.3337 > 192.168.1.123.7788: ack 1739326487,ack 1

第一次握手:192.168.1.116发送位码syn=1,随机产生seq number=3626544836的数据包到192.168.1.123,192.168.1.123由SYN=1知道192.168.1.116要求建立联机;

第二次握手:192.168.1.123收到请求后要确认联机信息,向192.168.1.116发送ack number=3626544837,syn=1,ack=1,随机产生seq=1739326486的包;

第三次握手:192.168.1.116收到后检查ack number是否正确,即第一次发送的seq number+1,以及位码ack是否为1,若正确,192.168.1.116会再发送ack number=1739326487,ack=1,192.168.1.123收到后确认seq=seq+1,ack=1则连接建立成功。

图解:
一个三次握手的过程(图1,图2)

(图1)

(图2)

第一次握手的标志位(图3)
我们可以看到标志位里面只有个同步位,也就是在做请求(SYN)
 
 (图3)

第二次握手的标志位(图4)
我们可以看到标志位里面有个确认位和同步位,也就是在做应答(SYN + ACK)
 
(图4)

第三次握手的标志位(图5)
我们可以看到标志位里面只有个确认位,也就是再做再次确认(ACK)
 
 
(图5)

一个完整的三次握手也就是 请求---应答---再次确认

http://www.cnblogs.com/rootq/articles/1377355.html

白话TCP三次握手的更多相关文章

  1. TCP三次握手/四次挥手详解

    一. TCP/IP协议族 TCP/IP是一个协议族,通常分不同层次进行开发,每个层次负责不同的通信功能.包含以下四个层次: 1. 链路层,也称作数据链路层或者网络接口层,通常包括操作系统中的设备驱动程 ...

  2. wireshark抓包工具简介以及tcp三次握手的一些含义

    wireshark是非常流行的网络封包分析软件,功能十分强大.可以截取各种网络封包,显示网络封包的详细信息.使用wireshark的人必须了解网络协议,否则就看不懂wireshark了.为了安全考虑, ...

  3. TCP三次握手四次挥手

    看到一篇总结很好的TCP三次握手,学习一下,原文链接. 建立TCP需要三次握手才能建立,而断开连接则需要四次握手.整个过程如下图所示: 先来看看如何建立连接的. 首先Client端发送连接请求报文,S ...

  4. TCP ,UDP概念和TCP三次握手连接 的知识点总结

    OSI 计算机网络7层模型 TCP/IP四层网络模型 传输层提供应用间的逻辑通信(端到端),网络层提供的是主机到主机的通信,传输层提供的是可靠服务. TCP 中常说的握手指的是:连接的定义和连接的建立 ...

  5. Wireshark基本介绍和学习TCP三次握手

    wireshark介绍 wireshark的官方下载网站: http://www.wireshark.org/ wireshark是非常流行的网络封包分析软件,功能十分强大.可以截取各种网络封包,显示 ...

  6. TCP 三次握手四次挥手, ack 报文的大小.tcp和udp的不同之处、tcp如何保证可靠的、tcp滑动窗口解释

    一.TCP三次握手和四次挥手,ACK报文的大小 首先连接需要三次握手,释放连接需要四次挥手 然后看一下连接的具体请求: [注意]中断连接端可以是Client端,也可以是Server端. [注意] 在T ...

  7. iOS 开发:TCP三次握手连接

    在TCP/IP协议中,TCP协议提供可靠的连接服务,采用三次握手建立一个连接. 第一次握手:建立连接时,客户端发送syn包(syn=j)到服务器,并进入SYN_SEND状态,等待服务器确认: 第二次握 ...

  8. 用tcpdump分析tcp三次握手,四次挥手

    1.tcpdump 简介 tcpdump是一个对网络上的数据包进行截获的包分析工具,一般linux系统以命令的形式使用 2.tcp三次握手 建立一个tcp连接会发生下面三个过程: 1.服务器必须准备好 ...

  9. TCP三次握手,数据传输,四次挥手

    TCP包结构 一个TCP包结构如下: 一个TCP包主要由TCP包头和数据部分组成,包头固定部分为20字节,选项和数据部分根据实际情况设置为4N(N可以为0)字节. 1.16bit源端口和目的端口号,它 ...

随机推荐

  1. Ubuntu16.04 + CUDA9.0 + cuDNN7.3 + Tensorflow-gpu-1.12 + Jupyter Notebook 深度学习环境配置

    目录 一.Ubuntu16.04 LTS系统的安装 二.设置软件源的国内镜像 1. 设置方法 2.关于ubuntu镜像的小知识 三.Nvidia显卡驱动的安装 1. 首先查看显卡型号和推荐的显卡驱动 ...

  2. lintcode-101-删除排序数组中的重复数字 II

    101-删除排序数组中的重复数字 II 跟进"删除重复数字": 如果可以允许出现两次重复将如何处理? 样例 标签 数组 两根指针 脸书 思路 参照上一篇博客lintcode-100 ...

  3. js阻止冒泡事件和默认事件的方法

    阻止默认事件 function stopDeFault(e){ if(e&&e.preventDefault){//非IE e.preventDefault(); }else{//IE ...

  4. Action中使用Json

    1.前台页面中的ajax: //根据部门查询该部门下的用户列表 function doSelectDept(){ //1.获取部门 var dept = $("#toCompDept opt ...

  5. 【bzoj4813】[Cqoi2017]小Q的棋盘 树上dfs+贪心

    题目描述 小Q正在设计一种棋类游戏.在小Q设计的游戏中,棋子可以放在棋盘上的格点中.某些格点之间有连线,棋子只能在有连线的格点之间移动.整个棋盘上共有V个格点,编号为0,1,2…,V-1,它们是连通的 ...

  6. vb常用函数一览表

    常用内部函数 数学函数 函数 功能 示例 结果 说明 Abs(x) 绝对值 Abs(-50.3) 50.3   Exp(x) 自然指数 Exp(2) e^2 e(自然对数的底)的某次方 Fix(x) ...

  7. 从统计学statistics的观点看概率分布

    已知数据x,希望得到未知label y,即得到映射x-->y: 几个概念: 1)p(x): data distribution 数据分布 2)p(y): prior distribution 先 ...

  8. 利用FFT来进行字符串匹配

    给定串A和串B,A由26个小写字母构成,B由?和26个小写字母构成 ?可以和任意字符匹配 求A中出现了多少次B 这里可以使用fft做法,定义向量A和向量B 然后求A和rev(B)的卷积结果C C的第i ...

  9. [洛谷P2763]试题库问题

    题目大意:有 $k$ 种类型和 $n$ 个题目,每个题目会适应部分类型,第$i$个类型需要$s_i$的题,一道题只能满足一种类型,现要求出满足所有类型的题目的方案 题解:看到匹配,想到网络流,源点向试 ...

  10. CF858F Wizard's Tour 解题报告

    题目描述 给定一张 \(n\) 个点 \(m\) 条边的无向图,每条边连接两个顶点,保证无重边自环,不保证连通. 你想在这张图上进行若干次旅游,每次旅游可以任选一个点 \(x\) 作为起点,再走到一个 ...