经典的开关灯问题。

高斯消元后矩阵对角线B[i][i]若是0,则第i个未知数是自由元(S个),它们可以任意取值,而让非自由元顺应它们,得到2S组解。

枚举自由元取0/1,最终得到最优解。

不知为何正着搜不行。

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define N 36
int n,m;
int ans=2147483647;
bool B[N][N+1],x[N],path[N];
void Madoka()
{
for(int i=1;i<=n;++i)
{
int j=i;
for(;j<=n;++j) if(B[j][i]) break;
if(j!=n+1)
{
swap(B[i],B[j]);
for(j=1;j<=n;++j)
if(i!=j&&B[j][i])
for(int k=1;k<=n+1;++k)
B[j][k]^=B[i][k];
}
}
}
void dfs(int cur,int now)
{
if(now>=ans) return;
if(!cur) {ans=now; return;}
if(B[cur][cur])
{
bool t=B[cur][n+1];
for(int i=cur+1;i<=n;++i)
if(B[cur][i]) t^=path[i];
path[cur]=t;
dfs(cur-1,now+t);
}
else
{
path[cur]=0; dfs(cur-1,now);
path[cur]=1; dfs(cur-1,now+1);
}
}
int main()
{
int x,y;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;++i) B[i][n+1]=1,B[i][i]=1;
for(int i=1;i<=m;++i)
{
scanf("%d%d",&x,&y);
B[x][y]=B[y][x]=1;
}
Madoka();
dfs(n,0);
printf("%d\n",ans);
return 0;
}

【dfs】【高斯消元】【异或方程组】bzoj1770 [Usaco2009 Nov]lights 燈 / bzoj2466 [中山市选2009]树的更多相关文章

  1. bzoj1770: [Usaco2009 Nov]lights 燈(折半搜索)

    1770: [Usaco2009 Nov]lights 燈 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1153  Solved: 564[Submi ...

  2. bzoj千题计划187:bzoj1770: [Usaco2009 Nov]lights 燈 (高斯消元解异或方程组+枚举自由元)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1770 a[i][j] 表示i对j有影响 高斯消元解异或方程组 然后dfs枚举自由元确定最优解 #in ...

  3. BZOJ.1923.[SDOI2010]外星千足虫(高斯消元 异或方程组 bitset)

    题目链接 m个方程,n个未知量,求解异或方程组. 复杂度比较高,需要借助bitset压位. 感觉自己以前写的(异或)高斯消元是假的..而且黄学长的写法都不需要回代. //1100kb 324ms #i ...

  4. UVA11542 Square(高斯消元 异或方程组)

    建立方程组消元,结果为2 ^(自由变元的个数) - 1 采用高斯消元求矩阵的秩 方法一: #include<cstdio> #include<iostream> #includ ...

  5. Tsinsen-A1488 : 魔法波【高斯消元+异或方程组】

    高斯消元. 自己只能想出来把每一个点看成一个变量,用Xi表示其状态,这样必定TLE,n^2 个变量,再加上3次方的高斯消元(当然,可以用bitset压位). 正解如下: 我们把地图划分成一个个的横条和 ...

  6. UVa 11542 (高斯消元 异或方程组) Square

    书上分析的太清楚,我都懒得写题解了.=_=|| #include <cstdio> #include <cstring> #include <cmath> #inc ...

  7. [bzoj1770][Usaco2009 Nov]lights 燈——Gauss消元法

    题意 给定一个无向图,初始状态所有点均为黑,如果更改一个点,那么它和与它相邻的点全部会被更改.一个点被更改当它的颜色与之前相反. 题解 第一道Gauss消元题.所谓gauss消元,就是使用初等行列式变 ...

  8. POJ.1830.开关问题(高斯消元 异或方程组)

    题目链接 显然我们需要使每个i满足\[( ∑_{j} X[j]*A[i][j] ) mod\ 2 = B[i]\] 求这个方程自由元Xi的个数ans,那么方案数便是\(2^{ans}\) %2可以用^ ...

  9. UVA 11542 Square 高斯消元 异或方程组求解

    题目链接:点击打开链接 白书的例题练练手. . . P161 #include <cstdio> #include <iostream> #include <algori ...

随机推荐

  1. git使用笔记(九)操作原理

    By francis_hao    Nov 27,2016   参考[1]的一张图已经把git的基本原理描述的很清楚了,如下:   下面以实例演示其过程,需要用到两个命令cat-file和ls-fil ...

  2. memcache client 的递增 incr 问题

    转载自:http://blog.csdn.net/mumu_shui/article/details/6048603 在集群环境(两台及以上的web服务)下为了保证自动生成号码(由于号码前缀是根据一些 ...

  3. 在Maven中怎么配置外部Jar

    转摘自:http://liugang594.iteye.com/blog/1677712 假设我们有一个Maven的project,其中有些Jar包不是来自Maven库的,是存在本地的某些Jar文件, ...

  4. domReady的兼容性实现方法

    一.为何要实现domReay方法? 举例: <!DOCTYPE html> <html lang="en"> <head> <meta c ...

  5. 100个Swift必备Tips(第二版)

    100个Swift必备Tips(第二版) 新年第一天,给大家一本电子书,希望新的一年里,步步高升. GitHub

  6. java字符串 64位编码

    byte[] encodeBase64 = Base64.encodeBase64("到了是是是是".getBytes("UTF-8")); System.ou ...

  7. 动态规划:LCIS

    先给出状态转移方程: 定义状态 F[i][j]表示以a串的前i个整数与b串的前j个整数且以b[j]为结尾构成的LCIS的长度 状态转移方程: ①F[i][j] = F[i-][j] (a[i] != ...

  8. [洛谷P1032] 字串变换

    洛谷题目链接:字串变换 题目描述 已知有两个字串 A, B 及一组字串变换的规则(至多6个规则): A1 -> B1 A2 -> B2 规则的含义为:在 A$中的子串 A1 可以变换为 B ...

  9. JVM 性能排查--汇总

    参考:http://blog.sina.com.cn/s/blog_61d758500102wnus.html

  10. 【洛谷 P3306】[SDOI2013]随机数生成器 (BSGS)

    题目链接 怎么这么多随机数生成器 题意见原题. 很容易想到\(BSGS\)算法,但是递推式是\(X_{i+1}=(aX_i+b)\mod p\),这显然不是一个等比数列. 但是可以用矩阵乘法来求出第\ ...