Description

N soldiers from the famous "*FFF* army" is standing in a line, from left to right.

 o   o   o   o   o   o   o   o   o   o   o   o   o   o   o   o   o   o /F\ /F\ /F\ /F\ /F\ /F\ /F\ /F\ /F\ /F\ /F\ /F\ /F\ /F\ /F\ /F\ /F\ /F\ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \

You, as the captain of *FFF*, want to divide them into smaller groups, but each group should still be continous in the original line. Like this:

 o   o   o  |  o   o   o   o  |  o   o   o   o   o   o  |  o   o   o   o   o /F\ /F\ /F\ | /F\ /F\ /F\ /F\ | /F\ /F\ /F\ /F\ /F\ /F\ | /F\ /F\ /F\ /F\ /F\ / \ / \ / \ | / \ / \ / \ / \ | / \ / \ / \ / \ / \ / \ | / \ / \ / \ / \ / \

In your opinion, the number of soldiers in each group should be no more than L.  Meanwhile, you want your division be "holy". Since the soldier may have different heights, you decide that for each group except the first one, its last soldier(which is the rightmost one) should be strictly taller than the previous group's last soldier. That is, if we set bi as the height of the last soldier in group i. Then for i >= 2, there should be b i > b i-1.  You give your division a score, which is calculated as , b 0 = 0 and 1 <= k <= M, if there are M groups in total. Note that M can equal to 1.  Given the heights of all soldiers, please tell us the best score you can get, or declare the division as impossible.

 

Input

The first line has a number T (T <= 10) , indicating the number of test cases.  For each test case, first line has two numbers N and L (1 <= L <= N <= 10 5), as described above.  Then comes a single line with N numbers, from H1 to Hn, they are the height of each soldier in the line, from left to right. (1 <= H i <= 10 5)
 

Output

For test case X, output "Case #X: " first, then output the best score.

题目大意:有n个数,划分为多个部分,假设M份,每份不能多于L个。每个数有一个h[i],每份最右边的那个数要大于前一份最右边的那个数。设每份最右边的数为b[i],求最大的sum{b[i]² - b[i - 1]},1≤i≤M,其中b[0] = 0。

思路:朴素DP为,dp[i]表示以i为结尾的最大划分。那么dp[i] = max{dp[j] - h[j] + h[i]²},1≤i-j≤L,h[j]<h[i]。这种会超时,采取线段树优化。因为有两个限制,考虑到若h[j]≥h[i],那么求i的时候一定不会用到j,那么先按h排序再DP(h相同的,i大的排前面)。

PS:又忘了把int改成long long >_<

代码(781MS):

 #include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long LL; const int MAXN = ; LL dp[MAXN];
int n, L;
LL tree[MAXN << ], maxt[MAXN << ]; void pushdown(int x) {
int ll = x << , rr = ll ^ ;
if(tree[x] != -) {
tree[ll] = max(tree[x], tree[ll]);
tree[rr] = max(tree[x], tree[rr]);
maxt[ll] = max(maxt[ll], tree[x]);
maxt[rr] = max(maxt[rr], tree[x]);
tree[x] = -;
}
} void update(int x, int left, int right, int a, int b, LL val) {
if(a <= left && right <= b) {
tree[x] = max(tree[x], val);
maxt[x] = max(maxt[x], val);
}
else {
pushdown(x);
int ll = x << , rr = ll ^ ;
int mid = (left + right) >> ;
if(a <= mid) update(ll, left, mid, a, b, val);
if(mid < b) update(rr, mid + , right, a, b, val);
maxt[x] = max(maxt[x], max(maxt[ll], maxt[rr]));
}
} LL query(int x, int left, int right, int a, int b) {
if(a <= left && right <= b) return maxt[x];
else {
pushdown(x);
int ll = x << , rr = ll ^ ;
int mid = (left + right) >> ;
LL ret = -;
if(a <= mid) ret = max(ret, query(ll, left, mid, a, b));
if(mid < b) ret = max(ret, query(rr, mid + , right, a, b));
return ret;
}
} struct Node {
int h, pos;
void read(int i) {
pos = i;
scanf("%d", &h);
}
bool operator < (const Node &rhs) const {
if(h != rhs.h) return h < rhs.h;
return pos > rhs.pos;
}
} a[MAXN]; LL solve() {
sort(a + , a + n + );
dp[n] = -;
memset(tree, , sizeof(tree));
memset(maxt, , sizeof(maxt));
update(, , n, , , );
for(int i = ; i <= n; ++i) {
LL tmp = query(, , n, max(, a[i].pos - L), a[i].pos - );
if(tmp == -) {
if(a[i].pos == n) break;
else continue;
}
dp[a[i].pos] = tmp + LL(a[i].h) * a[i].h;
if(a[i].pos == n) break;
update(, , n, a[i].pos, a[i].pos, dp[a[i].pos] - a[i].h);
}
//for(int i = 1; i <= n; ++i) printf("%I64d\n", dp[i]);
return dp[n];
} int main() {
int T; scanf("%d", &T);
for(int t = ; t <= T; ++t) {
scanf("%d%d", &n, &L);
for(int i = ; i <= n; ++i) a[i].read(i);
LL ans = solve();
if(ans == -) printf("Case #%d: No solution\n", t);
else printf("Case #%d: %I64d\n", t, ans);
}
}

HDU 4719 Oh My Holy FFF(DP+线段树)(2013 ACM/ICPC Asia Regional Online ―― Warmup2)的更多相关文章

  1. HDU 4722 Good Numbers(位数DP)(2013 ACM/ICPC Asia Regional Online ―― Warmup2)

    Description If we sum up every digit of a number and the result can be exactly divided by 10, we say ...

  2. HDU 4717 The Moving Points(三分法)(2013 ACM/ICPC Asia Regional Online ―― Warmup2)

    Description There are N points in total. Every point moves in certain direction and certain speed. W ...

  3. HDU 4714 Tree2cycle(树状DP)(2013 ACM/ICPC Asia Regional Online ―― Warmup)

    Description A tree with N nodes and N-1 edges is given. To connect or disconnect one edge, we need 1 ...

  4. HDU 4725 The Shortest Path in Nya Graph(最短路径)(2013 ACM/ICPC Asia Regional Online ―― Warmup2)

    Description This is a very easy problem, your task is just calculate el camino mas corto en un grafi ...

  5. HDU 5889 Barricade 【BFS+最小割 网络流】(2016 ACM/ICPC Asia Regional Qingdao Online)

    Barricade Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total S ...

  6. HDU4719-Oh My Holy FFF(DP线段树优化)

    Oh My Holy FFF Time Limit: 5000/2500 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others) T ...

  7. HDU 4747 Mex(线段树)(2013 ACM/ICPC Asia Regional Hangzhou Online)

    Problem Description Mex is a function on a set of integers, which is universally used for impartial ...

  8. hdu 4747 Mex (2013 ACM/ICPC Asia Regional Hangzhou Online)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4747 思路: 比赛打得太菜了,不想写....线段树莽一下 实现代码: #include<iost ...

  9. HDU 4729 An Easy Problem for Elfness(主席树)(2013 ACM/ICPC Asia Regional Chengdu Online)

    Problem Description Pfctgeorge is totally a tall rich and handsome guy. He plans to build a huge wat ...

随机推荐

  1. CSS选择器种类及使用方法

    css选择器 有通配符选择器书写格式:*+{声名块} 并集选择器/组合选择器 书写格式;元素或类或id+""+元素或类或id+","+元素或类或id{声明块} ...

  2. Golang 字符串转URLCode

    Golang 字符串转URLCode 最近因调用gitlab API,在生成某些字符串的时候直接请求 gitlab API 失败, url如下: keysURL := "http://192 ...

  3. ajax请求相关问题

    Ajax中async:false/true的作用: async. 默认是 true,即为异步方式,$.ajax执行后,会继续执行ajax后面的脚本,直到服务器端返回数据后,触发$.ajax里的succ ...

  4. SpringBoot非官方教程 | 第六篇:springboot整合mybatis

    转载请标明出处: 原文首发于:https://www.fangzhipeng.com/springboot/2017/07/11/springboot-mybatis/ 本文出自方志朋的博客 本文主要 ...

  5. ZLG zigbee 虚拟串口配置

    一.设置网关工作模式: 在ZNetCom Utility工具中,将设置网关工作模式为 Real COM 模式 启动 ZNetCom Utility 搜索设备 获得设备信息 修改工作模式为:real c ...

  6. @font-face css3自定义个性化字体

    使用第三方平台转换字体文件为font-face所支持的格式. TureTpe(.ttf)格式 支持浏览器:IE9+,Firefox3.5+,Chrome4+,Safari3+,Opera10+,iOS ...

  7. mix-blend-mode 混合模式 background-blend-mode 背景混合模式 isolation:isolate 隔离

    css3 mix-blend-mode 混合模式 该属性不仅可以作用于HTML,还可以作用于SVG 兼容性: IE 8~11 Edge 12~14 Firefox 41~47 chrome 45~51 ...

  8. bootstrap-daterangepicker插件运用

    引入:daterangepicker.css.daterangepicker.js.moment.js.moment.min.js 链接:https://files.cnblogs.com/files ...

  9. 微信js sdk动态引用

    一般情况下,微信的js-sdk只需要直接引用script即可 <script src="http://res.wx.qq.com/open/js/jweixin-1.0.0.js&qu ...

  10. p标签内不能含有块元素。

    原来一直听网上这样说.自己并没有实际遇到过.上例子. <!DOCTYPE html> <html> <head> <meta charset="ut ...