Description

N soldiers from the famous "*FFF* army" is standing in a line, from left to right.

 o   o   o   o   o   o   o   o   o   o   o   o   o   o   o   o   o   o /F\ /F\ /F\ /F\ /F\ /F\ /F\ /F\ /F\ /F\ /F\ /F\ /F\ /F\ /F\ /F\ /F\ /F\ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \

You, as the captain of *FFF*, want to divide them into smaller groups, but each group should still be continous in the original line. Like this:

 o   o   o  |  o   o   o   o  |  o   o   o   o   o   o  |  o   o   o   o   o /F\ /F\ /F\ | /F\ /F\ /F\ /F\ | /F\ /F\ /F\ /F\ /F\ /F\ | /F\ /F\ /F\ /F\ /F\ / \ / \ / \ | / \ / \ / \ / \ | / \ / \ / \ / \ / \ / \ | / \ / \ / \ / \ / \

In your opinion, the number of soldiers in each group should be no more than L.  Meanwhile, you want your division be "holy". Since the soldier may have different heights, you decide that for each group except the first one, its last soldier(which is the rightmost one) should be strictly taller than the previous group's last soldier. That is, if we set bi as the height of the last soldier in group i. Then for i >= 2, there should be b i > b i-1.  You give your division a score, which is calculated as , b 0 = 0 and 1 <= k <= M, if there are M groups in total. Note that M can equal to 1.  Given the heights of all soldiers, please tell us the best score you can get, or declare the division as impossible.

 

Input

The first line has a number T (T <= 10) , indicating the number of test cases.  For each test case, first line has two numbers N and L (1 <= L <= N <= 10 5), as described above.  Then comes a single line with N numbers, from H1 to Hn, they are the height of each soldier in the line, from left to right. (1 <= H i <= 10 5)
 

Output

For test case X, output "Case #X: " first, then output the best score.

题目大意:有n个数,划分为多个部分,假设M份,每份不能多于L个。每个数有一个h[i],每份最右边的那个数要大于前一份最右边的那个数。设每份最右边的数为b[i],求最大的sum{b[i]² - b[i - 1]},1≤i≤M,其中b[0] = 0。

思路:朴素DP为,dp[i]表示以i为结尾的最大划分。那么dp[i] = max{dp[j] - h[j] + h[i]²},1≤i-j≤L,h[j]<h[i]。这种会超时,采取线段树优化。因为有两个限制,考虑到若h[j]≥h[i],那么求i的时候一定不会用到j,那么先按h排序再DP(h相同的,i大的排前面)。

PS:又忘了把int改成long long >_<

代码(781MS):

 #include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long LL; const int MAXN = ; LL dp[MAXN];
int n, L;
LL tree[MAXN << ], maxt[MAXN << ]; void pushdown(int x) {
int ll = x << , rr = ll ^ ;
if(tree[x] != -) {
tree[ll] = max(tree[x], tree[ll]);
tree[rr] = max(tree[x], tree[rr]);
maxt[ll] = max(maxt[ll], tree[x]);
maxt[rr] = max(maxt[rr], tree[x]);
tree[x] = -;
}
} void update(int x, int left, int right, int a, int b, LL val) {
if(a <= left && right <= b) {
tree[x] = max(tree[x], val);
maxt[x] = max(maxt[x], val);
}
else {
pushdown(x);
int ll = x << , rr = ll ^ ;
int mid = (left + right) >> ;
if(a <= mid) update(ll, left, mid, a, b, val);
if(mid < b) update(rr, mid + , right, a, b, val);
maxt[x] = max(maxt[x], max(maxt[ll], maxt[rr]));
}
} LL query(int x, int left, int right, int a, int b) {
if(a <= left && right <= b) return maxt[x];
else {
pushdown(x);
int ll = x << , rr = ll ^ ;
int mid = (left + right) >> ;
LL ret = -;
if(a <= mid) ret = max(ret, query(ll, left, mid, a, b));
if(mid < b) ret = max(ret, query(rr, mid + , right, a, b));
return ret;
}
} struct Node {
int h, pos;
void read(int i) {
pos = i;
scanf("%d", &h);
}
bool operator < (const Node &rhs) const {
if(h != rhs.h) return h < rhs.h;
return pos > rhs.pos;
}
} a[MAXN]; LL solve() {
sort(a + , a + n + );
dp[n] = -;
memset(tree, , sizeof(tree));
memset(maxt, , sizeof(maxt));
update(, , n, , , );
for(int i = ; i <= n; ++i) {
LL tmp = query(, , n, max(, a[i].pos - L), a[i].pos - );
if(tmp == -) {
if(a[i].pos == n) break;
else continue;
}
dp[a[i].pos] = tmp + LL(a[i].h) * a[i].h;
if(a[i].pos == n) break;
update(, , n, a[i].pos, a[i].pos, dp[a[i].pos] - a[i].h);
}
//for(int i = 1; i <= n; ++i) printf("%I64d\n", dp[i]);
return dp[n];
} int main() {
int T; scanf("%d", &T);
for(int t = ; t <= T; ++t) {
scanf("%d%d", &n, &L);
for(int i = ; i <= n; ++i) a[i].read(i);
LL ans = solve();
if(ans == -) printf("Case #%d: No solution\n", t);
else printf("Case #%d: %I64d\n", t, ans);
}
}

HDU 4719 Oh My Holy FFF(DP+线段树)(2013 ACM/ICPC Asia Regional Online ―― Warmup2)的更多相关文章

  1. HDU 4722 Good Numbers(位数DP)(2013 ACM/ICPC Asia Regional Online ―― Warmup2)

    Description If we sum up every digit of a number and the result can be exactly divided by 10, we say ...

  2. HDU 4717 The Moving Points(三分法)(2013 ACM/ICPC Asia Regional Online ―― Warmup2)

    Description There are N points in total. Every point moves in certain direction and certain speed. W ...

  3. HDU 4714 Tree2cycle(树状DP)(2013 ACM/ICPC Asia Regional Online ―― Warmup)

    Description A tree with N nodes and N-1 edges is given. To connect or disconnect one edge, we need 1 ...

  4. HDU 4725 The Shortest Path in Nya Graph(最短路径)(2013 ACM/ICPC Asia Regional Online ―― Warmup2)

    Description This is a very easy problem, your task is just calculate el camino mas corto en un grafi ...

  5. HDU 5889 Barricade 【BFS+最小割 网络流】(2016 ACM/ICPC Asia Regional Qingdao Online)

    Barricade Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total S ...

  6. HDU4719-Oh My Holy FFF(DP线段树优化)

    Oh My Holy FFF Time Limit: 5000/2500 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others) T ...

  7. HDU 4747 Mex(线段树)(2013 ACM/ICPC Asia Regional Hangzhou Online)

    Problem Description Mex is a function on a set of integers, which is universally used for impartial ...

  8. hdu 4747 Mex (2013 ACM/ICPC Asia Regional Hangzhou Online)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4747 思路: 比赛打得太菜了,不想写....线段树莽一下 实现代码: #include<iost ...

  9. HDU 4729 An Easy Problem for Elfness(主席树)(2013 ACM/ICPC Asia Regional Chengdu Online)

    Problem Description Pfctgeorge is totally a tall rich and handsome guy. He plans to build a huge wat ...

随机推荐

  1. socket手写一个简单的web服务端

    直接进入正题吧,下面的代码都是我在pycharm中写好,再粘贴上来的 import socket server = socket.socket() server.bind(('127.0.0.1', ...

  2. js函数只触发一次

    如何让js中的函数只被执行一次?我们有时候会有这种需求,即让一个函数只执行一次,第二次调用不会返回任何有价值的值,也不会报错.下面将通过三个小demo展示使用的方法,当做个人笔记. 1.通过闭包来实现 ...

  3. swap, 不用临时变量如何做到交换a与b

    固定思维通常是需要一个临时变量temp,如果没有这个临时变量呢,其实也不复杂,:) inline void swap(int &a, int &b) /*C用指针吧*/ { a = a ...

  4. ABAP术语-Interface Parameter

    Interface Parameter 原文:http://www.cnblogs.com/qiangsheng/archive/2008/02/26/1081800.html Parameter t ...

  5. centos7-mongodb3.4.6集群的搭建

    0.需要环境 安装包:mongodb-linux-x86_64-3.4.6.tgz 安装路径:/usr/mongodb 服务器: 192.168.177.131/132/133 mongos 2000 ...

  6. JS高度融合入门笔记(一)

    复制下面的代码到编辑器里,让编辑器自动排版一下格式,效果会好一点,自我感觉我笔记的条理还是比较容易记忆的 <!DOCTYPE html><html><head> & ...

  7. 关于api接口

    前阵子一直疯狂的找关于php的api接口方面的资料来学习,总结了一下,无非就是请求数据,然后返回数据,当然也要设置相关安全措施,比如认证口令 等.返回数据格式是json 还是xml 看自己需求咯

  8. Hue联合(hdfs yarn hive) 后续......................

    1.启动hdfs,yarn start-all.sh 2.启动hive $ bin/hive $ bin/hive --service metastore & $ bin/hive --ser ...

  9. Java学习笔记七:Java的流程控制语句之switch

    Java条件语句之 switch 当需要对选项进行等值判断时,使用 switch 语句更加简洁明了.例如:根据考试分数,给予前四名不同的奖品.第一名,奖励笔记本一台:第二名,奖励 IPAD 2 一个: ...

  10. java简单界面实现

    import javax.swing.JFrame; import javax.swing.JPanel; public class DemoFrame extends JFrame{ public ...