GSS2 - Can you answer these queries II

Being a completist and a simplist, kid Yang Zhe cannot solve but
get Wrong Answer from most of the OI problems. And he refuse to
write two program of same kind at all. So he always failes in
contests.

When having a contest, Yang Zhe looks at the score of every
problems first. For the problems of the same score, Yang Zhe will
do only one of them. If he's lucky enough, he can get all the scores
wanted.

Amber is going to hold a contest in SPOJ. She has made a list of
N candidate problems, which fit Yang Zhe very well. So Yang
Zhe can solve any problem he want. Amber lined up the problems,
began to select. She will select a subsequence of the list as the
final problems. Being A girl of great compassion, she'd like to
select such a subsequence (can be empty) that Yang Zhe will get the
maximal score over all the possible subsequences.

Amber found the subsequence easily after a few minutes. To make
things harder, Amber decided that, Yang Zhe can take this contest
only if Yang Zhe can answer her Q questions. The question is:
if the final problems are limited to be a subsequence
of list[X..Y] (1 <= X <= Y <= N),
what's the maximal possible score Yang Zhe can get?

As we know, Yang Zhe is a bit idiot (so why did he solve the
problem with a negative score?), he got Wrong Answer again... Tell
him the correct answer!

Input

  • Line 1: integer N (1 <= N <= 100000);
  • Line 2: N integers denoting the score of each problem,
    each of them is a integer in range [-100000, 100000];
  • Line 3: integer Q (1 <= Q <= 100000);
  • Line 3+i (1 <= i <= Q): two
    integers X and
    Y denoting the ith question.

Output

  • Line i: a single integer, the answer to the ith
    question.

Example

Input:
9
4 -2 -2 3 -1 -4 2 2 -6
3
1 2
1 5
4 9 Output:
4
5
3

Warning: large input/output data,be careful with certain languages

【题意】

给出A[1],A[2]...,A[N], 有Q次询问,每次询问包含x,y,

需要回答Max{a[i]+a[i+1]+...+a[j]; x <= i <= j <= y},相同的数只能计算一次。

看到题目还以为是DP,根本没往线段树上想,看了题解感觉好神奇啊。。。

先将查询区间离线并且排序(类似莫队算法),然后循环 i =1~n,对于每一个a[i],插入进线段树更新节点。而线段树的每一个节点维护四个数组。sum[rt]表示以a[i]结尾的

最大的后缀和,presum[rt]表示1,~n中最大的区间和(a[j]+...+a[k],1<=j<=k<=i),lazy[rt]为懒惰标记,做过区间修改的应该知道,prelazy[rt]则为此区间最大的lazy。

然后就是线段树的事了。代码不难,应该很好理解,虽然我花了两天才看懂=_=

#include <iostream>
#include <cstring>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <time.h>
#include <string>
#include <map>
#include <stack>
#include <vector>
#include <set>
#include <queue>
#define met(a,b) memset(a,b,sizeof a)
#define pb push_back
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
using namespace std;
typedef long long ll;
const int N=2e5+;
const int M=N*N+;
ll a[N];
ll num,m,n,tot=;
ll sum[N*],presum[N*],ans[N];
ll lazy[N*],prelazy[N*],pre[N*];
struct man{
ll l,r,id;
bool operator < (const man & b) const {
return r < b.r;
}
}q[N];
void Push_down(int rt) {
if(lazy[rt]||prelazy[rt]) {
presum[rt*]=max(presum[rt*],sum[rt*]+prelazy[rt]);
prelazy[rt*]=max(prelazy[rt*],lazy[rt*]+prelazy[rt]);
sum[rt*]+=lazy[rt];lazy[rt*]+=lazy[rt]; presum[rt*+]=max(presum[rt*+],sum[rt*+]+prelazy[rt]);
prelazy[rt*+]=max(prelazy[rt*+],lazy[rt*+]+prelazy[rt]);
sum[rt*+]+=lazy[rt];lazy[rt*+]+=lazy[rt];
lazy[rt]=prelazy[rt]=;
}
}
void Push_up(ll rt){
presum[rt]=max(presum[rt*],presum[rt*+]);
sum[rt]=max(sum[rt*],sum[*rt+]);
}
void Update(ll L,ll R,ll l,ll r,ll rt,ll add) {
if(l>=L&&r<=R) {
lazy[rt]+=add;
sum[rt]+=add;
prelazy[rt]=max(prelazy[rt],lazy[rt]);
presum[rt]=max(presum[rt],sum[rt]);
return;
}
Push_down(rt);
ll m=(r+l)>>;
if(L<=m)Update(L,R,lson,add);
if(R>m) Update(L,R,rson,add);
Push_up(rt);
}
ll Query(ll L,ll R,ll l,ll r,ll rt) {
if(L<=l&&r<=R)return presum[rt];
Push_down(rt);
ll m=(l+r)>>,ans=-;
if(L<=m)ans=max(ans,Query(L,R,lson));
if(R>m)ans=max(ans,Query(L,R,rson));
return ans;
} int main() {
scanf("%lld",&n);
for(int i=;i<=n;i++){
scanf("%lld",&a[i]);
}
scanf("%lld",&m);
for(int i=;i<m;i++){
scanf("%lld%lld",&q[i].l,&q[i].r);
q[i].id=i;
}
sort(q,q+m);
ll cnt=;
for(int i=;i<=n;i++){
Update(pre[a[i]+N]+,i,,n,,a[i]);
pre[a[i]+N]=i;
while(cnt<m&&q[cnt].r==i){
ans[q[cnt].id]=Query(q[cnt].l,q[cnt].r,,n,);
cnt++;
}
}
for(int i=;i<m;i++)printf("%lld ",ans[i]);printf("\n");
return ;
}

SPOJ GSS2 - Can you answer these queries II(线段树 区间修改+区间查询)(后缀和)的更多相关文章

  1. bzoj 2482: [Spoj GSS2] Can you answer these queries II 线段树

    2482: [Spoj1557] Can you answer these queries II Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 145 ...

  2. SPOJ GSS2 Can you answer these queries II ——线段树

    [题目分析] 线段树,好强! 首先从左往右依次扫描,线段树维护一下f[].f[i]表示从i到当前位置的和的值. 然后询问按照右端点排序,扫到一个位置,就相当于查询区间历史最值. 关于历史最值问题: 标 ...

  3. SPOJ 1557. Can you answer these queries II 线段树

    Can you answer these queries II Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 https://www.spoj.com/pr ...

  4. Spoj 1557 Can you answer these queries II 线段树 随意区间最大子段和 不反复数字

    题目链接:点击打开链接 每一个点都是最大值,把一整个序列和都压缩在一个点里. 1.普通的区间求和就是维护2个值,区间和Sum和延迟标志Lazy 2.Old 是该区间里出现过最大的Sum, Oldlaz ...

  5. HDU - 4027 Can you answer these queries?(线段树区间修改)

    https://cn.vjudge.net/problem/HDU-4027 题意 给一个有初始值的数组,存在两种操作,T=0时将[L,R]的值求平方根,T=1时查询[L,R]的和. 分析 显然不符合 ...

  6. SPOJ GSS1_Can you answer these queries I(线段树区间合并)

    SPOJ GSS1_Can you answer these queries I(线段树区间合并) 标签(空格分隔): 线段树区间合并 题目链接 GSS1 - Can you answer these ...

  7. spoj gss2 : Can you answer these queries II 离线&&线段树

    1557. Can you answer these queries II Problem code: GSS2 Being a completist and a simplist, kid Yang ...

  8. SPOJ GSS3 Can you answer these queries III[线段树]

    SPOJ - GSS3 Can you answer these queries III Description You are given a sequence A of N (N <= 50 ...

  9. 【BZOJ2482】[Spoj1557] Can you answer these queries II 线段树

    [BZOJ2482][Spoj1557] Can you answer these queries II Description 给定n个元素的序列. 给出m个询问:求l[i]~r[i]的最大子段和( ...

随机推荐

  1. Failed with exception MetaException(message:javax.jdo.JDODataStoreException: Error(s) were found while auto-creating/validating the datastore for classes.

    hive (db_emp)> load data local inpath '/opt/datas/emp.txt' into table emp_part partition(`date`=' ...

  2. BZOJ day1

    十题击破  1051108811921432195119682242245624632761

  3. 【BZOJ 1409】 Password 数论(扩展欧拉+矩阵快速幂+快速幂)

    读了一下题就会很愉快的发现,这个数列是关于p的幂次的斐波那契数列,很愉快,然后就很愉快的发现可以矩阵快速幂一波,然后再一看数据范围就......然后由于上帝与集合对我的正确启示,我就发现这个东西可以用 ...

  4. [模拟赛] GotoAndPlay

    GotoAndPlay 10月3日,在杭州市西湖景区,一只小松鼠不停地接受一道道食物,花生. 玉米.饼干,可谓来者不拒,憨态可掬的模样吸引了众多围观者... Description 小松鼠终于吃撑了, ...

  5. HAOI2006 均分数据 [模拟退火]

    题目描述 已知N个正整数:A1.A2.--.An .今要将它们分成M组,使得各组数据的数值和最平均,即各组的均方差最小.均方差公式如下: 输入输出格式 输入格式: 输入文件data.in包括: 第一行 ...

  6. angular js的Inline Array Annotation的理解

    inline Array annotation的形式是: someModule.controller('MyController', ['$scope', 'greeter', function($s ...

  7. python 闭包与装饰器

    1.闭包--返回子函数名 作用:使用子函数之外的父函数的变量 闭包就是你调用了一个函数a,这个函数a反悔了一个子函数名b,这个返回的函数b就叫做闭包 代码举例 def a(): test = 'aa' ...

  8. Step-By-Step: Setting up Active Directory in Windows Server 2016

    There are interesting new features now made available in Windows Server 2016 such as time based grou ...

  9. npm获取配置值的两种方式

    命令行标记 在命令行上放置--foo bar设置foo配置参数为bar. 一个 -- 参数(argument)告诉cli解析器停止读取flags.一个 在命令行结尾的--flag参数(paramete ...

  10. IOS 上传项目到github 终端操作

    1.创建github账号 2.创建秘钥 3.Github配置秘钥 4.上传文件 复制保存网址 终端操作,如果没有ssh,自行安装 GitHub配置秘钥 克隆github上创建的项目 将自己的本地项目, ...