Building a Space Station
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 7469   Accepted: 3620

Description

You are a member of the space station engineering team, and are assigned a task in the construction process of the station. You are expected to write a computer program to complete the task.
The space station is made up with a number of units, called cells.
All cells are sphere-shaped, but their sizes are not necessarily
uniform. Each cell is fixed at its predetermined position shortly after
the station is successfully put into its orbit. It is quite strange that
two cells may be touching each other, or even may be overlapping. In an
extreme case, a cell may be totally enclosing another one. I do not
know how such arrangements are possible.

All the cells must be connected, since crew members should be able
to walk from any cell to any other cell. They can walk from a cell A to
another cell B, if, (1) A and B are touching each other or overlapping,
(2) A and B are connected by a `corridor', or (3) there is a cell C such
that walking from A to C, and also from B to C are both possible. Note
that the condition (3) should be interpreted transitively.

You are expected to design a configuration, namely, which pairs of
cells are to be connected with corridors. There is some freedom in the
corridor configuration. For example, if there are three cells A, B and
C, not touching nor overlapping each other, at least three plans are
possible in order to connect all three cells. The first is to build
corridors A-B and A-C, the second B-C and B-A, the third C-A and C-B.
The cost of building a corridor is proportional to its length.
Therefore, you should choose a plan with the shortest total length of
the corridors.

You can ignore the width of a corridor. A corridor is built between
points on two cells' surfaces. It can be made arbitrarily long, but of
course the shortest one is chosen. Even if two corridors A-B and C-D
intersect in space, they are not considered to form a connection path
between (for example) A and C. In other words, you may consider that two
corridors never intersect.

Input

The input consists of multiple data sets. Each data set is given in the following format.

n

x1 y1 z1 r1

x2 y2 z2 r2

...

xn yn zn rn

The first line of a data set contains an integer n, which is the number of cells. n is positive, and does not exceed 100.

The following n lines are descriptions of cells. Four values in a
line are x-, y- and z-coordinates of the center, and radius (called r in
the rest of the problem) of the sphere, in this order. Each value is
given by a decimal fraction, with 3 digits after the decimal point.
Values are separated by a space character.

Each of x, y, z and r is positive and is less than 100.0.

The end of the input is indicated by a line containing a zero.

Output

For
each data set, the shortest total length of the corridors should be
printed, each in a separate line. The printed values should have 3
digits after the decimal point. They may not have an error greater than
0.001.

Note that if no corridors are necessary, that is, if all the cells
are connected without corridors, the shortest total length of the
corridors is 0.000.

Sample Input

3
10.000 10.000 50.000 10.000
40.000 10.000 50.000 10.000
40.000 40.000 50.000 10.000
2
30.000 30.000 30.000 20.000
40.000 40.000 40.000 20.000
5
5.729 15.143 3.996 25.837
6.013 14.372 4.818 10.671
80.115 63.292 84.477 15.120
64.095 80.924 70.029 14.881
39.472 85.116 71.369 5.553
0

Sample Output

20.000
0.000
73.834
【分析】一开始Kruskal()里面是这么写的,一直WA;
void Kruskal() {
double sum=;
int num=;
int u,v;
for(int i=; i<=cnt; i++) {
u=edg[i].u;
v=edg[i].v;
if(Find(u)!=Find(v)) {
sum+=edg[i].w;
num++;
Union(u,v);
}
//printf("!!!%d %d\n",num,sum);
if(num>=n-) {
printf("%.3lf\n",sum); break;
}
}
}
后来把那个num判断去了就A了,有人知道为什么吗?
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <climits>
#include <cstring>
#include <string>
#include <set>
#include <map>
#include <queue>
#include <stack>
#include <vector>
#include <list>
#include<functional>
#define mod 1000000007
#define inf 0x3f3f3f3f
#define pi acos(-1.0)
using namespace std;
typedef long long ll;
const int N=;
const int M=;
struct man
{
double x,y,z,r;int num;
}a[N];
struct Edg {
int v,u;
double w;
} edg[M];
bool cmp(Edg g,Edg h) {
return g.w<h.w;
}
int n,m,maxn,cnt;
int parent[N]; void init() {
for(int i=; i<n; i++)parent[i]=i;
} void Build() {
double w;
int u,v;
for(int i=; i<n; i++) {
scanf("%lf%lf%lf%lf",&a[i].x,&a[i].y,&a[i].z,&a[i].r);
a[i].num=i;
}
for(int i=;i<n;i++)
{
for(int j=i+;j<n;j++)
{
u=a[i].num;v=a[j].num;
double ss=sqrt((a[i].x-a[j].x)*(a[i].x-a[j].x)+(a[i].y-a[j].y)*(a[i].y-a[j].y)+(a[i].z-a[j].z)*(a[i].z-a[j].z))-a[i].r-a[j].r;
edg[++cnt].u=u;edg[cnt].v=v;
if(ss>)edg[cnt].w=ss;
else edg[cnt].w=;
}
}
sort(edg,edg+cnt+,cmp);
} int Find(int x) {
if(parent[x] != x) parent[x] = Find(parent[x]);
return parent[x];
}//查找并返回节点x所属集合的根节点 void Union(int x,int y) {
x = Find(x);
y = Find(y);
if(x == y) return;
parent[y] = x;
}//将两个不同集合的元素进行合并 void Kruskal() {
double sum=;
int num=;
int u,v;
printf("!!!%d\n",cnt);
for(int i=; i<=cnt; i++) {
u=edg[i].u;
v=edg[i].v;
if(Find(u)!=Find(v)) {
sum+=edg[i].w;
num++;
Union(u,v);
}
//printf("!!!%d %d\n",num,sum);
} printf("%.3lf\n",sum);
}
int main() {
while(~scanf("%d",&n)&&n) {
cnt=-;
init();
Build();
Kruskal();
}
return ;
}

POJ2032 Building a Space Station(Kruskal)(并查集)的更多相关文章

  1. POJ - 2031 Building a Space Station 三维球点生成树Kruskal

    Building a Space Station You are a member of the space station engineering team, and are assigned a ...

  2. POJ 2031 Building a Space Station【经典最小生成树】

    链接: http://poj.org/problem?id=2031 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

  3. POJ 2031 Building a Space Station (最小生成树)

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5173   Accepte ...

  4. POJ 2031 Building a Space Station (最小生成树)

    Building a Space Station 题目链接: http://acm.hust.edu.cn/vjudge/contest/124434#problem/C Description Yo ...

  5. POJ2031 Building a Space Station 2017-04-13 11:38 48人阅读 评论(0) 收藏

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 8572   Accepte ...

  6. POJ 2031 Building a Space Station

    3维空间中的最小生成树....好久没碰关于图的东西了.....              Building a Space Station Time Limit: 1000MS   Memory Li ...

  7. poj 2031 Building a Space Station【最小生成树prime】【模板题】

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5699   Accepte ...

  8. Building a Space Station POJ - 2031

    Building a Space Station POJ - 2031 You are a member of the space station engineering team, and are ...

  9. poj 2931 Building a Space Station &lt;克鲁斯卡尔&gt;

    Building a Space Station Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 5869 Accepted: 2 ...

随机推荐

  1. HDU 6201 transaction transaction transaction(拆点最长路)

    transaction transaction transaction Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 132768/1 ...

  2. Light OJ 1074:Extended Traffic(spfa判负环)

    Extended Traffic 题目链接:https://vjudge.net/problem/LightOJ-1074 Description: Dhaka city is getting cro ...

  3. Codeforces Round #515 (Div. 3) E. Binary Numbers AND Sum

    E. Binary Numbers AND Sum 题目链接:https://codeforces.com/contest/1066/problem/E 题意: 给出两个用二进制表示的数,然后将第二个 ...

  4. POJ2112:Optimal Milking(Floyd+二分图多重匹配+二分)

    Optimal Milking Time Limit: 2000MS   Memory Limit: 30000K Total Submissions: 20262   Accepted: 7230 ...

  5. POJ1087:A Plug for UNIX(最大流)

    A Plug for UNIX 题目链接:https://vjudge.net/problem/POJ-1087 Description: You are in charge of setting u ...

  6. Phantomjs设置浏览器useragent的方式

    Selenium中使用PhantomJS,设置User-Agent的方法. 默认情况下,是没有自动设置User-Agent的:设置PhantomJS的user-agent def __init__(s ...

  7. mysql_存储过程和函数

    存储过程和函数 1.什么是存储过程和函数 存储过程和函数是事先经过编译并存储在数据库中的一段SQL语句集合,调用存储过程和函数可以简化应用开发人员的很多工作,减少数据在数据库和应用服务器之间的传输,对 ...

  8. js 日期获去及格式化

    原文地址:http://www.cnblogs.com/qinpengming/archive/2012/12/03/2800002.html Js获取当前日期时间及格式化操作 var myDate ...

  9. express添加拦截器

    var express = require('express')   , routes = require('./routes')   , http = require('http')   , pat ...

  10. Spring - IoC(12): 属性占位符

    使用属性占位符可以将 Spring 配置文件中的部分元数据放在属性文件中设置,这样可以将相似的配置(如 JDBC 的参数配置)放在特定的属性文件中,如果只需要修改这部分配置,则无需修改 Spring ...