CF

A. Party

time limit per test3 seconds

memory limit per test256 megabytes

inputstandard input

outputstandard output

A company has n employees numbered from 1 to n. Each employee either has no immediate manager or exactly one immediate manager, who is another employee with a different number. An employee A is said to be the superior of another employee B if at least one of the following is true:

Employee A is the immediate manager of employee B

Employee B has an immediate manager employee C such that employee A is the superior of employee C.

The company will not have a managerial cycle. That is, there will not exist an employee who is the superior of his/her own immediate manager.

Today the company is going to arrange a party. This involves dividing all n employees into several groups: every employee must belong to exactly one group. Furthermore, within any single group, there must not be two employees A and B such that A is the superior of B.

What is the minimum number of groups that must be formed?

Input

The first line contains integer n (1 ≤ n ≤ 2000) — the number of employees.

The next n lines contain the integers pi (1 ≤ pi ≤ n or pi = -1). Every pi denotes the immediate manager for the i-th employee. If pi is -1, that means that the i-th employee does not have an immediate manager.

It is guaranteed, that no employee will be the immediate manager of him/herself (pi ≠ i). Also, there will be no managerial cycles.

Output

Print a single integer denoting the minimum number of groups that will be formed in the party.

Examples

inputCopy

5

-1

1

2

1

-1

outputCopy

3

Note

For the first example, three groups are sufficient, for example:

Employee 1

Employees 2 and 4

Employees 3 and 5

【分析】:若是并查集,不要路径压缩,因为要记录深度。输出最大深度即可。

[DFS]

#include <bits/stdc++.h>

using namespace std;

const int maxn = 1e5 + 10;
const int mod = 142857;
const int inf = 0x3f3f3f3f; int n,vis[maxn],cnt,x,ans;
vector<int> G[maxn]; void dfs(int root, int cur)
{
ans=max(ans,cur);
for(int i=0;i<G[root].size();i++)
{
vis[G[root][i]]=1;
dfs(G[root][i],cur+1);
}
} int main()
{
while(~scanf("%d",&n))
{
memset(vis,0,sizeof(vis));
for(int i=0;i<=n;i++) G[i].clear();
for(int i=1;i<=n;i++)
{
scanf("%d",&x);
if(x!=-1) G[x].push_back(i);
}
ans=0;
for(int i=1;i<=n;i++)
{
if(!vis[i])
{
vis[i]=1;
dfs(i,1);
}
}
printf("%d\n",ans);
}
}
#include <bits/stdc++.h>

using namespace std;

const int maxn = 1e5 + 10;
const int mod = 142857;
const int inf = 0x3f3f3f3f; int n,fa[maxn],cnt,x,ans;
vector<int> G[maxn]; void dfs(int i)
{
if(i==-1) return;
else
{
x++;
dfs(fa[i]);
}
} int main()
{
while(~scanf("%d",&n))
{
for(int i=1;i<=n;i++)
{
scanf("%d",&fa[i]);
}
ans=0;
for(int i=1;i<=n;i++)
{
x=0;
dfs(i);
ans=max(ans,x);
}
printf("%d\n",ans);
}
}

[并查集]

#include <bits/stdc++.h>

using namespace std;

const int maxn = 1e5 + 10;
const int mod = 142857;
const int inf = 0x3f3f3f3f; int n,fa[maxn],cnt,x,ans;
vector<int> G[maxn]; void init(int n)
{
for(int i=1;i<=n;i++)
fa[i]=i;
}
void Find(int x)
{
if(x==fa[x])
return ;
cnt++;
Find(fa[x]);
} void join(int x,int y)
{
fa[x]=y;
return;
} int main()
{
while(~scanf("%d",&n))
{
for(int i=1;i<=n;i++)
{
scanf("%d",&x);
if(x!=-1)
join(i,x);
}
ans=0;
for(int i=1;i<=n;i++)
{
cnt=0;
Find(i);
ans=max(ans,cnt);
}
printf("%d\n",ans);
}
}

CF 115 A 【求树最大深度/DFS/并查集】的更多相关文章

  1. 求树的直径+并查集(bfs,dfs都可以)hdu4514

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4514 这题主要是叫我们求出树的直径,在求树的直径之前要先判断一下有没有环 树的直径指的就是一棵树上面距 ...

  2. 【bzoj2870】最长道路tree 树的直径+并查集

    题目描述 给定一棵N个点的树,求树上一条链使得链的长度乘链上所有点中的最小权值所得的积最大. 其中链长度定义为链上点的个数. 输入 第一行N 第二行N个数分别表示1~N的点权v[i] 接下来N-1行每 ...

  3. 【CF938G】Shortest Path Queries(线段树分治,并查集,线性基)

    [CF938G]Shortest Path Queries(线段树分治,并查集,线性基) 题面 CF 洛谷 题解 吼题啊. 对于每个边,我们用一个\(map\)维护它出现的时间, 发现询问单点,边的出 ...

  4. [BZOJ3038]上帝造题的七分钟2 树状数组+并查集

    考试的时候用了两个树状数组去优化,暴力修改,树状数组维护修改后区间差值还有最终求和,最后骗了40分.. 这道题有好多种做法,求和好说,最主要的是开方.这道题过的关键就是掌握一点:在数据范围内,最多开方 ...

  5. hdu 5458 Stability(树链剖分+并查集)

    Stability Time Limit: 3000/2000 MS (Java/Others)    Memory Limit: 65535/102400 K (Java/Others)Total ...

  6. 【BZOJ4025】二分图(线段树分治,并查集)

    [BZOJ4025]二分图(线段树分治,并查集) 题面 BZOJ 题解 是一个二分图,等价于不存在奇环. 那么直接线段树分治,用并查集维护到达根节点的距离,只计算就好了. #include<io ...

  7. 【loj6038】「雅礼集训 2017 Day5」远行 树的直径+并查集+LCT

    题目描述 给你 $n$ 个点,支持 $m$ 次操作,每次为以下两种:连一条边,保证连完后是一棵树/森林:询问一个点能到达的最远的点与该点的距离.强制在线. $n\le 3\times 10^5$ ,$ ...

  8. cf1278D——树的性质+并查集+线段树/DFS判环

    昨天晚上本来想认真打一场的,,结果陪女朋友去了.. 回来之后看了看D,感觉有点思路,结果一直到现在才做出来 首先对所有线段按左端点排序,然后用并查集判所有边是否联通,即遍历每条边i,和前一条不覆盖它的 ...

  9. 51nod1307(暴力树剖/二分&dfs/并查集)

    题目链接: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1307 题意: 中文题诶~ 思路: 解法1:暴力树剖 用一个数 ...

随机推荐

  1. 机器学习基础知识笔记(一)-- 极大似然估计、高斯混合模型与EM算法

    似然函数 常说的概率是指给定参数后,预测即将发生的事件的可能性.拿硬币这个例子来说,我们已知一枚均匀硬币的正反面概率分别是0.5,要预测抛两次硬币,硬币都朝上的概率: H代表Head,表示头朝上 p( ...

  2. HDU 6201 transaction transaction transaction(拆点最长路)

    transaction transaction transaction Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 132768/1 ...

  3. 【BZOJ 2744 朋友圈】

    Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 1570  Solved: 532[Submit][Status][Discuss] Descripti ...

  4. 【BZOJ 2241 打地鼠】

    Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1430  Solved: 908[Submit][Status][Discuss] Descripti ...

  5. innodb_force_recovery

    Warning Before using innodb_force_recovery ensure that you have a backup copy of your database in ca ...

  6. JS中二维数组的声明

    var myarr=new Array(); //先声明一维 for(var i=0;i<2;i++){ //一维长度为2 myarr[i]=new Array(); //再声明二维 for(v ...

  7. IDEA的常用快捷键

    --------------在日常写代码的过程中自行整理出来----------------- *Alt+Enter 导入包 Ctrl+Alt+L 自动格式化代码 *Alt+Enter 自我修复 Sh ...

  8. NYOJ 973 天下第一 (最短路)

    题目链接 描述 AC_Grazy一直对江湖羡慕不已,向往着大碗吃肉大碗喝酒的豪情,但是"人在江湖漂,怎能 不挨刀","人在江湖身不由己",如果自己的武功太差,在 ...

  9. 地震(quake)

    地震 题目描述 一场地震毁了 Farmer John 的整个农场.他是个有恒心的人,决定重建农场.在重建了所有 n(1<=n<=400)块田野后,他意识到还得修路将它们连起来.完工后,任两 ...

  10. 解决小米/红米手机无法进行jdwp调试的问题

    问题描述:在逆向一个app,研究环境是一台红米2,需要使用jdwp接口,也就是ddms下面这个界面: 但神奇的是,同一台主机上,模拟器的进程可以显示在ddms界面上,红米2确一个进程都没有显示出来.c ...