RDD工作原理:

主要分为三部分:创建RDD对象,DAG调度器创建执行计划,Task调度器分配任务并调度Worker开始运行。

SparkContext(RDD相关操作)→通过(提交作业)→(遍历RDD拆分stage→生成作业)DAGScheduler→通过(提交任务集)→任务调度管理(TaskScheduler)→通过(按照资源获取任务)→任务调度管理(TaskSetManager)

举例:以下面一个按 A-Z 首字母分类,查找相同首字母下不同姓名总个数的例子来看一下 RDD 是如何运行起来的。

步骤 1 :创建 RDD 。 上面的例子除去最后一个 collect 是个动作,不会创建 RDD 之外,前面四个转换都会创建出新的 RDD 。因此第一步就是创建好所有 RDD( 内部的五项信息 ) 。

步骤 2 :创建执行计划。 Spark 会尽可能地管道化,并基于是否要重新组织数据来划分 阶段 (stage) ,例如本例中的 groupBy() 转换就会将整个执行计划划分成两阶段执行。最终会产生一个 DAG(directed acyclic graph ,有向无环图 ) 作为逻辑执行计划。

步骤 3 :调度任务。 将各阶段划分成不同的 任务 (task) ,每个任务都是数据和计算的合体。在进行下一阶段前,当前阶段的所有任务都要执行完成。因为下一阶段的第一个转换一定是重新组织数据的,所以必须等当前阶段所有结果数据都计算出来了才能继续。

假设本例中的 hdfs://names 下有四个文件块,那么 HadoopRDD 中 partitions 就会有四个分区对应这四个块数据,同时 preferedLocations 会指明这四个块的最佳位置。现在,就可以创建出四个任务,并调度到合适的集群结点上。

Task管理和序列化:

Task的运行要解决的问题不外乎就是如何以正确的顺序,有效地管理和分派任务,如何将Task及运行所需相关数据有效地发送到远端,以及收集运行结果

Task的派发源起于DAGScheduler调用TaskScheduler.submitTasks将一个Stage相关的一组Task一起提交调度。

在TaskSchedulerImpl中,这一组Task被交给一个新的TaskSetManager实例进行管理,所有的TaskSetManager经由SchedulableBuilder根据特定的调度策略进行排序,TaskSchedulerImpl的resourceOffers函数中,当前被选择的TaskSetManager的ResourceOffer函数被调用并返回包含了序列化任务数据的TaskDescription,最后这些TaskDescription再由SchedulerBackend派发到ExecutorBackend去执行

系列化的过程中,上一节中所述App依赖文件相关属性URL等通过DataOutPutStream写出,而Task本身通过可配置的Serializer来序列化,当前可配制的Serializer包括如JavaSerializer ,KryoSerializer等

Task的运行结果在Executor端被序列化并发送回SchedulerBackend,由于受到Akka Frame Size尺寸的限制,如果运行结果数据过大,结果会存储到BlockManager中,这时候发送到SchedulerBackend的是对应数据的BlockID,TaskScheduler最终会调用TaskResultGetter在线程池中以异步的方式读取结果,TaskSetManager再根据运行结果更新任务状态(比如失败重试等)并汇报给DAGScheduler等

Spark RDD简介与运行机制概述的更多相关文章

  1. SSL/TLS 协议运行机制概述(二)

    SSL/TLS 协议运行机制概述(二) 在SSL/TLS 协议运行机制概述(一)中介绍了TLS 1.2 的运行机制,现在我们来看年 TLS 1.3 的运行机制.会涉及到SSL/TLS 协议运行机制概述 ...

  2. SSL/TLS 协议运行机制概述(一)

    SSL/TLS 协议运行机制概述(一) SSL/TLS 发展史 1994年,NetScape 设计了SSL协议(Secure Sockets Layer) 1.0,未正式发布 1995年,NetSca ...

  3. 【Spark Core】任务运行机制和Task源代码浅析1

    引言 上一小节<TaskScheduler源代码与任务提交原理浅析2>介绍了Driver側将Stage进行划分.依据Executor闲置情况分发任务,终于通过DriverActor向exe ...

  4. 通过WordCount解析Spark RDD内部源码机制

    一.Spark WordCount动手实践 我们通过Spark WordCount动手实践,编写单词计数代码:在wordcount.scala的基础上,从数据流动的视角深入分析Spark RDD的数据 ...

  5. Spark standalone简介与运行wordcount(master、slave1和slave2)

    前期博客 Spark standalone模式的安装(spark-1.6.1-bin-hadoop2.6.tgz)(master.slave1和slave2)  Spark运行模式概述 1. Stan ...

  6. 01_日志采集框架Flume简介及其运行机制

    离线辅助系统概览: 1.概述: 在一个完整的大数据处理系统中,除了hdfs+mapreduce+hive组成分析系统的核心之外,还需要数据采集.结果数据导出. 任务调度等不可或缺的辅助系统,而这些辅助 ...

  7. MapReduce的核心运行机制

    MapReduce的核心运行机制概述: 一个完整的 MapReduce 程序在分布式运行时有两类实例进程: 1.MRAppMaster:负责整个程序的过程调度及状态协调 2.Yarnchild:负责 ...

  8. Spark 中 RDD的运行机制

    1. RDD 的设计与运行原理 Spark 的核心是建立在统一的抽象 RDD 之上,基于 RDD 的转换和行动操作使得 Spark 的各个组件可以无缝进行集成,从而在同一个应用程序中完成大数据计算任务 ...

  9. Spark运行模式概述

    Spark编程模型的回顾 spark编程模型几大要素 RDD的五大特征 Application program的组成 运行流程概述 具体流程(以standalone模式为例) 任务调度 DAGSche ...

随机推荐

  1. JavaWeb学习记录(十三)——商城购物之添加订单的数据库级联操作

    一.方法实现 private JdbcTemplate jdbcTemplate = new JdbcTemplate(DBConn.getDataSource()); @SuppressWarnin ...

  2. 越狱Season 1-Episode 11: And Then There Were 7-M

    Season 1, Episode 11: And Then There Were 7-M -Michael: That one 那个 -businessman: Nice choice choice ...

  3. linux中的find命令——查找文件名

    1.在某目录下查找名为“elm.cc”的文件 find /home/lijiajia/ -name elm.cc 2.查找文件名中包含某字符(如"elm")的文件 find /ho ...

  4. C语言 文件读取

    FILE *fp = fopen("data.txt","rt");fscanf(fp,"%d", &n ); /* 把数据放到数组 ...

  5. GUI、GUILayout、EditorGUI、EditorGUILayout

    GUI GUI.BeginGroup(rect) //在里面画的控件,将以这个GroupRect的左上角为原点,仅此而已 GUI.EndGroup() GUILayout GUILayout.Begi ...

  6. Linux-lsof命令

    lsof,List Open Files 列出当前系统打开文件的工具.在linux环境下,任何事物都以文件的形式存在,通过文件不仅仅可以访问常规数据,还可以访问网络连接和硬件(lsof强大原因).所以 ...

  7. 锁_rac环境kill锁表会话后出现killed状态(解决)

    原创作品,出自 "深蓝的blog" 博客,深蓝的blog:http://blog.csdn.net/huangyanlong/article/details/46876961 ra ...

  8. nginx反向代理原理和配置讲解

    最近有打算研读nginx源代码,看到网上介绍nginx可以作为一个反向代理服务器完成负载均衡.所以搜罗了一些关于反向代理服务器的内容,整理综合. 一  概述 反向代理(Reverse Proxy)方式 ...

  9. Linux进程间通信-信号

    1.什么是信号信号是Linux系统响应某些条件而产生的一个事件,接收到该信号的进程会执行相应的操作. 2.信号的产生1)由硬件产生,如从键盘输入Ctrl+C可以终止当前进程2)由其他进程发送,如可在s ...

  10. [C# 基础知识梳理系列]专题六:泛型基础篇——为什么引入泛型

    引言: 前面专题主要介绍了C#1中的2个核心特性——委托和事件,然而在C# 2.0中又引入一个很重要的特性,它就是泛型,大家在平常的操作中肯定会经常碰到并使用它,如果你对于它的一些相关特性还不是很了解 ...