HDU 5382 莫比乌斯反演
题目大意:
求S(n)的值 n<=1000000
这是官方题解给出的推导过程,orz,按这上面说的来写,就不难了
这里需要思考的就是G(n)这个如何利用积性函数的性质线性筛出来
作为一个质数,那么肯定G(i) = 2
1. 那么一个数 i 乘上了一个未出现的素数prime,那么就相当于,在当前符合的因子上面都乘了prime之后依旧符合,而原来 i 对应的数也符合,那么说明翻了两倍
也就是 g(i*prime) = 2*g(i) = g(prime) * g(i)
2. 如果这个乘上的素数prime已经存在于 i 中 , 那么仔细想一下,只有 i 那些符合的因子中已经带prime的必须再乘上这个prime,不然这个prime跑到 i/d中,gcd = prime了,其他的都不变,说明其实 g(i*prime) = g(i) 的
#include <bits/stdc++.h> using namespace std;
#define N 1000000
#define ll long long
const int MOD=; ll g[N+] , t[N+] , f[N+];
ll sum[N+];
int prime[N/] , tot;
bool check[N+]; void get_g()
{
g[] = ;
for(int i= ; i<=N ; i++){
if(!check[i]) prime[tot++] = i , g[i] = ;
for(int j= ; j<tot ; j++){
if((ll)prime[j]*i>N) break;
check[prime[j]*i] = true;
if(i%prime[j]) g[prime[j]*i] = g[prime[j]]*g[i];
else {g[prime[j]*i]=g[i]; break;}
}
}
} void get_t()
{
for(int k= ; k<=N ; k++)
for(int i=k ; i<=N ; i+=k)
t[i] = (t[i]+g[k-])%MOD;
} void get_f()
{
for(int i= ; i<=N ; i++)
f[i] = (f[i-]+*i--t[i-])%MOD;
} void init()
{
get_g();
get_t();
get_f();
for(int i= ; i<=N ; i++) sum[i] = (sum[i-]+f[i])%MOD;
} int main()
{
//freopen("a.in" , "r" , stdin);
init();
int T , n;
scanf("%d" , &T);
while(T--){
scanf("%d" , &n);
printf("%I64d\n" , sum[n]);
}
return ;
}
HDU 5382 莫比乌斯反演的更多相关文章
- HDU 4746 (莫比乌斯反演) Mophues
这道题看巨巨的题解看了好久,好久.. 本文转自hdu4746(莫比乌斯反演) 题意:给出n, m, p,求有多少对a, b满足gcd(a, b)的素因子个数<=p,(其中1<=a<= ...
- HDU 1695 (莫比乌斯反演) GCD
题意: 从区间[1, b]和[1, d]中分别选一个x, y,使得gcd(x, y) = k, 求满足条件的xy的对数(不区分xy的顺序) 分析: 虽然之前写过一个莫比乌斯反演的总结,可遇到这道题还是 ...
- GCD HDU - 1695 莫比乌斯反演入门
题目链接:https://cn.vjudge.net/problem/HDU-1695#author=541607120101 感觉讲的很好的一个博客:https://www.cnblogs.com/ ...
- HDU 5212 莫比乌斯反演
Code Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submis ...
- hdu 1695(莫比乌斯反演)
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- HDU 6053(莫比乌斯反演)
题意略. 思路:首先想到暴力去扫,这样的复杂度是n * min(ai),对于gcd = p,对答案的贡献应该是 (a1 / p) * (a2 / p) * .... * (an / p),得出这个贡献 ...
- hdu 4746Mophues[莫比乌斯反演]
Mophues Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 327670/327670 K (Java/Others) Total ...
- 算术 HDU - 6715 (莫比乌斯反演)
大意: 给定$n,m$, 求$\sum\limits_{i=1}^n\sum\limits_{j=1}^m\mu(lcm(i,j))$ 首先有$\mu(lcm(i,j))=\mu(i)\mu(j)\m ...
- HDU 4746 莫比乌斯反演+离线查询+树状数组
题目大意: 一个数字组成一堆素因子的乘积,如果一个数字的素因子个数(同样的素因子也要多次计数)小于等于P,那么就称这个数是P的幸运数 多次询问1<=x<=n,1<=y<=m,P ...
随机推荐
- Openfire 是怎么存离线消息
原文:http://myopenfire.com/article/getarticle/26 1.openfire默认怎么存离线消息 在默认情况下,不添加任何插件的情况下,当用户不在线,对于发送给 ...
- Hibernate Projections(投影、统计、不重复结果)
Hibernate除了处理查询结果集中的对象之外,还可以将结果集中的结果当做行和列集来使用,这与通过JDBC执行select查询获得的数据的使用方式相似.因此,Hibernate也支持属性.统计函数和 ...
- 转:C的|、||、&、&&、异或、~、!运算
转自:C的|.||.&.&&.异或.~.!运算 位运算 位运算的运算分量只能是整型或字符型数据,位运算把运算对象看作是由二进位组成的位串信息,按位完成指定的运算,得到位 ...
- jQuery中其他
hide: 隐藏 $('img').hide(); show:显示 $('img').show(); 单选多选下拉菜单 选中状态checked ($('.radio:checked')); 单选 ( ...
- 当CanTK遇到PhoneGap
有朋友问能不能在CanTK和AppBuilder开发的APP里发送UDP数据,HTML5里只能用HTTPS/HTTP/WebSocket几种通讯方式,要使用UDP需要通过phonegap打包成APK等 ...
- java 集合(set)
Interface ListIterator<E> 特有的方法: hasPrevious() 判断是否存在上一个元素. previous() 当前指针先向上移动一个单位,然后再取出当前指针 ...
- Unity shader(CG) 写一个 散色、折射、反射、菲涅尔、gamma、简单后期屏幕特效
http://www.lai18.com/content/506918.html 1.自生要求是很重要的,当然不是什么强迫工作之类的,而是自己有限的能力上不断的扩展兴趣上的内容. 2.用生活的眼光去发 ...
- 【转】 Linux 线程同步的三种方法
线程的最大特点是资源的共享性,但资源共享中的同步问题是多线程编程的难点.linux下提供了多种方式来处理线程同步,最常用的是互斥锁.条件变量和信号量. 一.互斥锁(mutex) 通过锁机制实现线程间的 ...
- C# winform程序怎么打包成安装项目(图解)
1:新建安装部署项目 打开VS,点击新建项目,选择:其他项目类型->安装与部署->安装向导(安装项目也一样),然后点击确定.(详细见下图) 此主题相关图片如下: 2:安装向导 关闭后打开安 ...
- php 正则匹配中文
在javascript中,要判断字符串是中文是很简单的.比如:var str = "php编程";if (/^[\u4e00-\u9fa5]+$/.test(str)) {aler ...