http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1676

对顶点i,j,起点s=1,终点t=n,可以认为题意要求一组01矩阵use[i][j],使得aveCost=sigma(use[i][j]*cost[i][j])/sigma(use[i][j])最小,且{(i,j)|use[i][j]==1}是图的S-T割

定义F(e)=min(sigma(use[i][j]*(cost[i][j]-a))),明显,F(e)是目标式的变形,且当F(e)=0时,a就是aveCost,以cost[i][j]-a为容量建图,那么此时F(e)就是最小割容量.

二分确定最小割也即最大流为0时的a值,当流量恰好为0时取值最优,否则,若流量大于0不是最优,流量小于0不满足题意

注意:当确定a值时,cost[i][j]-a会导致负容量边,这些边可以使F(e)更小,所以直接加上即可

 #include <cstdio>
#include <cstring>
#include<algorithm>
#include <queue>
#include <cmath>
using namespace std;
const int maxn=;
const int maxm=;
const int inf=0x7fffffff;
const double eps=1e-;
int n,m;
int G[maxn][maxn];
int e[maxn][maxn];
int len[maxn];
int num[maxn];
int ind[maxn][maxn];
double c[maxn][maxn];
double f[maxn][maxn];
int ans[maxm];
int alen;
bool pars[maxn];
int dis[maxn];
int gap[maxn]; void addedge(int f,int t){
G[f][len[f]++]=t;
G[t][len[t]++]=f;
}
double build(double lamda){
double flow=;
memset(len,,sizeof(len));
for(int i=;i<=n;i++){
for(int j=;j<num[i];j++){
int to=e[i][j];
if(i<to){
f[i][to]=c[i][to]-lamda;
f[to][i]=c[i][to]-lamda;
if(f[i][to]<){flow+=f[i][to];}
else{
addedge(i,to);
}
}
}
}
memset(dis,,sizeof(dis));
memset(gap,,sizeof(gap));
gap[]=n;
return flow;
} double dfs(int s,double flow){
if(s==n)return flow;
int mindis=n-;
double tflow=flow,sub;
for(int i=;i<len[s];i++){
int to=G[s][i];
if(f[s][to]>eps){
if(dis[to]+==dis[s]){
sub=dfs(to,min(tflow,f[s][to]));
f[s][to]-=sub;
f[to][s]+=sub;
tflow-=sub;
if(dis[]>=n)return flow-tflow;
if(tflow<eps)break;
}
mindis=min(mindis,dis[to]);
}
}
if(flow-tflow<eps){
--gap[dis[s]];
if(gap[dis[s]]==)dis[]=n;
else {
dis[s]=mindis+;
++gap[dis[s]];
}
}
return flow-tflow;
} double maxflow(double lamda){
double flow=build(lamda);
while(dis[]<n){
flow+=dfs(,inf);
}
return flow;
} double binarysearch(double s,double e){
if(s+eps>e){return s;}
double mid=(s+e)/;
double flow=maxflow(mid);
if(fabs(flow)<eps)return mid;
else if(flow<-eps){
return binarysearch(s,mid);
}
else {
return binarysearch(mid,e);
}
} void fnd(double a){
memset(pars,,sizeof(pars));
queue<int >que;
que.push();
pars[]=true;
while(!que.empty()){
int s=que.front();que.pop();
for(int i=;i<len[s];i++){
int to=G[s][i];
if(!pars[to]&&f[s][to]>eps){
pars[to]=true;que.push(to);
}
}
}
alen=;
for(int i=;i<=n;i++){
if(pars[i]){
for(int j=;j<num[i];j++){
int to=e[i][j];
if(!pars[to]){
ans[alen++]=ind[i][to];
}
else if(i<to&&c[i][to]+eps<a){
ans[alen++]=ind[i][to];
}
}
}
else {
for(int j=;j<num[i];j++){
int to=e[i][j];
if(i<to&&!pars[to]&&c[i][to]+eps<a){
ans[alen++]=ind[i][to];
}
}
}
}
sort(ans,ans+alen);
} int main(){
bool first=true;
while(scanf("%d%d",&n,&m)==){
if(!first)puts("");
else first=false;
memset(num,,sizeof(num));
int maxc=,minc=1e7+;
for(int i=;i<=m;i++){
int f,t,cost;
scanf("%d%d%d",&f,&t,&cost);
e[f][num[f]++]=t;
e[t][num[t]++]=f;
c[f][t]=c[t][f]=cost;
ind[f][t]= ind[t][f]=i;
maxc=max(maxc,cost);
minc=min(minc,cost);
}
double a=binarysearch(,maxc+);
fnd(a);
printf("%d\n",alen);
for(int i=;i<alen;i++)printf("%d%c",ans[i],i==alen-?'\n':' ');
}
return ;
}

HDU 2676 Network Wars 01分数规划,最小割 难度:4的更多相关文章

  1. zoj 2676 Network Wars 0-1分数规划+最小割

    题目详解出自 论文 Amber-最小割模型在信息学竞赛中的应用 题目大意: 给出一个带权无向图 G = (V,E), 每条边 e属于E都有一个权值We,求一个割边集C,使得该割边集的平均边权最小,即最 ...

  2. ZOJ 2676 Network Wars[01分数规划]

    ZOJ Problem Set - 2676 Network Wars Time Limit: 5 Seconds      Memory Limit: 32768 KB      Special J ...

  3. bzoj 3232 圈地游戏 —— 01分数规划+最小割建图(最大权闭合子图)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3232 心烦意乱的时候调这道题真是...越调越气,就这样过了一晚上... 今天再认真看看,找出 ...

  4. ZOJ 2676 Network Wars(网络流+分数规划)

    传送门 题意:求无向图割集中平均边权最小的集合. 论文<最小割模型在信息学竞赛中的应用>原题. 分数规划.每一条边取上的代价为1. #include <bits/stdc++.h&g ...

  5. zoj2676 Network Wars(0-1分数规划,最大流模板)

    Network Wars 07年胡伯涛的论文上的题:http://wenku.baidu.com/view/87ecda38376baf1ffc4fad25.html 代码: #include < ...

  6. 【BZOJ3232】圈地游戏 分数规划+最小割

    [BZOJ3232]圈地游戏 Description DZY家的后院有一块地,由N行M列的方格组成,格子内种的菜有一定的价值,并且每一条单位长度的格线有一定的费用. DZY喜欢在地里散步.他总是从任意 ...

  7. bzoj 3232: 圈地游戏【分数规划+最小割】

    数组开小导致TTTTTLE-- 是分数规划,设sm为所有格子价值和,二分出mid之后,用最小割来判断,也就是判断sm-dinic()>=0 这个最小割比较像最大权闭合子图,建图是s像所有点连流量 ...

  8. 【洛谷P2494】 [SDOI2011]保密(分数规划+最小割)

    洛谷 题意: 题意好绕好绕...不想写了. 思路: 首先类似于分数规划做法,二分答案得到到每个点的最小危险度. 然后就是在一个二分图中,两边撤掉最少的点(相应代价为上面算出的危险度)及相应边,使得中间 ...

  9. ZOJ 2676 Network Wars ★(最小割算法介绍 && 01分数规划)

    [题意]给出一个带权无向图,求割集,且割集的平均边权最小. [分析] 先尝试着用更一般的形式重新叙述本问题.设向量w表示边的权值,令向量c=(1, 1, 1, --, 1)表示选边的代价,于是原问题等 ...

随机推荐

  1. [原]CentOS 6.5 上安装 MySQL 5.6

    参考文档: http://dev.mysql.com/doc/refman/5.6/en/linux-installation-yum-repo.html 1. 下载 rpm 文件:wget http ...

  2. C语言 数组之无限循环

    #include<stdio.h> #include<stdlib.h> #include<Windows.h> //定于数组的大小 #define N 10 vo ...

  3. Linux下的线程

    一.线程的优点 与传统进程相比,用线程来实现相同的功能有如下优点: (1)系统资源消耗低. (2)速度快. (3)线程间的数据共享比进程间容易的多. 二.多线程编程简单实例 #include < ...

  4. GhostDoc的使用

    原文:GhostDoc的使用 一.简介 GhostDoc是Visual Studio的一个免费插件,可以为开发人员自动生成XML格式的注释文档. 二.下载 需要的朋友可以去这里下载,填个Email地址 ...

  5. Hive中抽取连续多天登录用户

    昨天群上有人发个阿里的面试题,题目描述大概如下: 数据源:用户登录表,只有俩个字段,uid和dt 试用HQL抽取出连续登录了K天的用户uid 第一个想法就是直接用一个UDF解决,按uid分组,把dt收 ...

  6. python selenium报错整理

    element not visible 没有加等待时间 元素没有被选定,很多时候是因为没有最大化窗口,网页窗口只显示一部分,所以找不到元素! <exception str() failed> ...

  7. TCP协议三次握手与四次挥手通俗解析

    TCP/IP协议三次握手与四次握手流程解析 一.TCP报文格式 TCP/IP协议的详细信息参看<TCP/IP协议详解>三卷本.下面是TCP报文格式图: 图1 TCP报文格式 上图中有几个字 ...

  8. matplotlib注解-【老鱼学matplotlib】

    本节讲述在图片中添加注解. 直接上代码: import numpy as np import pandas as pd import matplotlib.pyplot as plt # 生成x轴上的 ...

  9. VUE 引入阿里图标库

    本身项目是VUE, Element-UI项目, 所以内置Element-UI图标库 地址如下, https://element.eleme.cn/#/zh-CN/component/icon 使用时: ...

  10. Spring Boot中使用Spring Security进行安全控制转载来自翟永超

    我们在编写Web应用时,经常需要对页面做一些安全控制,比如:对于没有访问权限的用户需要转到登录表单页面.要实现访问控制的方法多种多样,可以通过Aop.拦截器实现,也可以通过框架实现(比如:Apache ...