Linux Bash代码

[yuanhao15@lu01 libsvm-rank-2.81]$  for ((i=0; i<=19; i++)) do ./svm-train -s 5 -c 10 -t 0 X4058_300/mytask_train.$((i)); done

[yuanhao15@lu01 libsvm-rank-2.81]$  for ((i=0; i<=19; i++)) do ./svm-predict  X4058_300/mytask_test.$((i)) mytask_train.$((i)).model output_file.$((i)); done

Accuracy = 33.9901% (69/203) (classification)
Mean absolute error = 0.906404 (regression)
Squared correlation coefficient = 0.194913 (regression)
Accuracy = 33.0049% (67/203) (classification)
Mean absolute error = 0.916256 (regression)
Squared correlation coefficient = 0.15242 (regression)
Accuracy = 26.601% (54/203) (classification)
Mean absolute error = 1.03941 (regression)
Squared correlation coefficient = 0.0883807 (regression)
Accuracy = 29.5567% (60/203) (classification)
Mean absolute error = 0.990148 (regression)
Squared correlation coefficient = 0.105375 (regression)
Accuracy = 36.4532% (74/203) (classification)
Mean absolute error = 0.876847 (regression)
Squared correlation coefficient = 0.185002 (regression)
Accuracy = 27.5862% (56/203) (classification)
Mean absolute error = 1.02463 (regression)
Squared correlation coefficient = 0.0996877 (regression)
Accuracy = 32.0197% (65/203) (classification)
Mean absolute error = 0.931034 (regression)
Squared correlation coefficient = 0.152379 (regression)
Accuracy = 31.0345% (63/203) (classification)
Mean absolute error = 0.965517 (regression)
Squared correlation coefficient = 0.140663 (regression)
Accuracy = 29.064% (59/203) (classification)
Mean absolute error = 1 (regression)
Squared correlation coefficient = 0.178278 (regression)
Accuracy = 30.5419% (62/203) (classification)
Mean absolute error = 0.945813 (regression)
Squared correlation coefficient = 0.176329 (regression)
Accuracy = 37.4384% (76/203) (classification)
Mean absolute error = 0.832512 (regression)
Squared correlation coefficient = 0.279723 (regression)
Accuracy = 32.0197% (65/203) (classification)
Mean absolute error = 0.945813 (regression)
Squared correlation coefficient = 0.160936 (regression)
Accuracy = 29.5567% (60/203) (classification)
Mean absolute error = 0.975369 (regression)
Squared correlation coefficient = 0.175127 (regression)
Accuracy = 26.1084% (53/203) (classification)
Mean absolute error = 1.0197 (regression)
Squared correlation coefficient = 0.123619 (regression)
Accuracy = 33.0049% (67/203) (classification)
Mean absolute error = 0.990148 (regression)
Squared correlation coefficient = 0.0964109 (regression)
Accuracy = 32.5123% (66/203) (classification)
Mean absolute error = 0.926108 (regression)
Squared correlation coefficient = 0.195953 (regression)
Accuracy = 28.5714% (58/203) (classification)
Mean absolute error = 0.995074 (regression)
Squared correlation coefficient = 0.140257 (regression)
Accuracy = 33.4975% (68/203) (classification)
Mean absolute error = 0.896552 (regression)
Squared correlation coefficient = 0.22211 (regression)
Accuracy = 39.4089% (80/203) (classification)
Mean absolute error = 0.857143 (regression)
Squared correlation coefficient = 0.219532 (regression)
Accuracy = 34.9754% (71/203) (classification)
Mean absolute error = 0.935961 (regression)
Squared correlation coefficient = 0.145034 (regression)

  

Linux Bash代码 利用for循环实现命令的多次执行的更多相关文章

  1. Linux:-bash: ***: command not found,系统很多命令都用不了

    系统:64位RHEL6 突然之间linux很多命令都用不了,均提示没有此命令. 这应该是系统环境变量出现了问题导致的. 出现这种可能性的原因有很多,大多数是因为,安装了新的软件要配置环境变量,但是没有 ...

  2. 一段linux shell 代码涉及for循环和if esle

    if [ 0 -ne $# ]; then echo "USAGE: prog [IN]input_file" >&2; exit 1;fisource /etc/p ...

  3. Linux:-bash: ***: command not found

    Linux:-bash: ***: command not found,系统很多命令都用不了,均提示没有此命令. 突然之间linux很多命令都用不了,均提示没有此命令. 这应该是系统环境变量出现了问题 ...

  4. Linux Bash命令关于程序调试详解

    转载:http://os.51cto.com/art/201006/207230.htm 参考:<Linux shell 脚本攻略>Page22-23 Linux bash程序在程序员的使 ...

  5. 【Shell循环进程并行处理】利用简单的语句实现for循环并行处理命令

    在生信分析中,经常会遇到不同的重复和处理,这样的分析过程有时是非常费时且占用资源并不是很多的,可以同时在后台运行以节约时间,这是并行处理的意义.除了需要并行处理,循环迭代来遍历整个文件夹的需要分析的数 ...

  6. linux bash Shell脚本经典 Fork炸弹演示及命令详解

    Jaromil 在 2002 年设计了最为精简的一个Linux Fork炸弹,整个代码只有13个字符,在 shell 中运行后几秒后系统就会宕机: :(){:|:&};: 这样看起来不是很好理 ...

  7. Linux Bash命令杂记(cut sort uniq wc tee)

    Linux Bash命令杂记(cut sort uniq wc tee) 数据流重定向 标准输入(stdin):代码为0,使用<或<<: 标准输出(stdout):代码为1,使用&g ...

  8. 转: windows 10使用原生linux bash命令行

    转: https://www.zybuluo.com/pandait/note/337430 windows 10使用原生linux bash命令行 linux bash windows-10 第一时 ...

  9. Linux系统下利用wget命令把整站下载做镜像网站

    Linux系统下利用wget命令把整站下载做镜像网站 2011-05-28 18:13:01 | 1次阅读 | 评论:0 条 | itokit  在linux下完整的用wget命令整站采集网站做镜像 ...

随机推荐

  1. Shared Assembilies and Strongly Named Assemblies

    the .NET Framework has in place to deal with versioning problems. Two Kinds of Assemblies, Two Kinds ...

  2. SQL GUID和自增列做主键的优缺点

    我们公司的数据库全部是使用GUID做主键的,很多人习惯使用int做主键.所以呢,这里总结一下,将两种数据类型做主键进行一个比较. 使用INT做主键的优点: 1.需要很小的数据存储空间,仅仅需要4 by ...

  3. [转]-Android Studio 快捷键整理分享-SadieYu

    文章编辑整理:Android Studio 中文组 - SadieYu Alt+回车 导入包,自动修正 Ctrl+N   查找类 Ctrl+Shift+N 查找文件 Ctrl+Alt+L  格式化代码 ...

  4. Redis基础知识之—— hset 和hsetnx 的区别

    命令参数:HSET key field valueHSETNX key field value 作用区别:HSET 将哈希表 key 中的域 field 的值设为 value .如果 key 不存在, ...

  5. linux设备驱动编写_tasklet机制(转)

    在编写设备驱动时, tasklet 机制是一种比较常见的机制,通常用于减少中断处理的时间,将本应该是在中断服务程序中完成的任务转化成软中断完成. 为了最大程度的避免中断处理时间过长而导致中断丢失,有时 ...

  6. HTML <meta> 标签

    <meta> 元素可提供有关页面的元信息,元数据总是以名称/值的形式被成对传递的. <meta> 标签位于文档的头部,不包含任何内容. <meta> 标签的属性定义 ...

  7. BestCoder Valentine's Day Round

    昨晚在开赛前5分钟注册的,然后比赛刚开始就掉线我就不想说了(蹭网的下场……),只好用手机来看题和提交,代码用电脑打好再拉进手机的(是在傻傻地用手机打了一半后才想到的办法). 1001,也就是 hdu ...

  8. go循环

    Go语言里的For循环语句 更多 0 golang   package main import "fmt" func main() { sum := 0 for i := 0; i ...

  9. Android开发面试经——3.常见Java基础笔试题

      Android开发(29)  版权声明:本文为寻梦-finddreams原创文章,请关注:http://blog.csdn.net/finddreams 关注finddreams博客:http:/ ...

  10. hibernate的离线关联(多级)查询

    如果实体对象中没有关联对象的情况使用DetachedCriteria进行查询是一件很简单的事情. 假设要通过stuName查询一个学生Student记录,可以如下: Java代码 DetachedCr ...