3. SVM分类器求解(1)——Lagrange duality
先抛开上面的二次规划问题,先来看看存在等式约束的极值问题求法,比如下面的最优化问题:

目标函数是f(w),下面是等式约束。通常解法是引入拉格朗日算子,这里使用
来表示算子,得到拉格朗日公式为

是等式约束的个数。
然后分别对w和
求偏导,使得偏导数等于0,然后解出w和
。
然后我们探讨有不等式约束的极值问题求法,问题如下:

我们定义一般化的拉格朗日公式

这里的
和
都是拉格朗日算子。如果按这个公式求解,会出现问题,因为我们求解的是最小值,而这里的
已经不是0了,我们可以将
调整成很大的正值,来使最后的函数结果是负无穷。因此我们需要排除这种情况,我们定义下面的函数:

这里的P代表primal。假设
或者
,那么我们总是可以调整
和
来使得
有最大值为正无穷。而只有g和h满足约束时,
为f(w)。这个函数的精妙之处在于
,而且求极大值。
因此我们可以写作

这样我们原来要求的min f(w)可以转换成求
了。

我们使用
来表示
。如果直接求解,首先面对的是两个参数,而
也是不等式约束,然后再在w上求最小值。这个过程不容易做,那么怎么办呢?
我们先考虑另外一个问题
D的意思是对偶,
将问题转化为先求拉格朗日关于w的最小值,将
和
看作是固定值。之后在
求最大值的话:

这个问题是原问题的对偶问题,相对于原问题只是更换了min和max的顺序,而一般更换顺序的结果是
,如
。 然而在这里两者相等。用
来表示对偶问题如下:

下面解释在什么条件下两者会等价。假设f和g都是凸函数,h是仿射的(affine,there exists
、
,so that
)。并且存在w使得对于所有的i,
。在这种假设下,一定存在
使得
是原问题的解,同时也是对偶问题的解,即
,此时
满足库恩-塔克条件(Karush-Kuhn-Tucker, KKT condition),条件如下:

所以如果
满足了库恩-塔克条件,那么他们就是原问题和对偶问题的解。让我们再次审视公式(5),这个条件称作是KKT dual complementarity条件。这个条件隐含了如果
,那么
。也就是说,
时,w处于可行域的边界上,这时才是起作用的约束。而其他位于可行域内部(
的)点都是不起作用的约束,其
。
KKT的总体思想是将极值会在可行域边界上取得,也就是不等式为0或等式约束里取得,而最优下降方向一般是这些等式的线性组合,其中每个元素要么是不等式为0的约束,要么是等式约束。对于在可行域边界内的点,对最优解不起作用,因此前面的系数为0。上述数学知识可参见凸优化教程《Convex Optimization》——Stephen Boyd
3. SVM分类器求解(1)——Lagrange duality的更多相关文章
- 4. SVM分类器求解(2)
最优间隔分类器(optimal margin classifier) 重新回到SVM的优化问题: 我们将约束条件改写为: 从KKT条件得知只有函数间隔是1(离超平面最近的点)的线性约束式前面的系数,也 ...
- Support Vector Machine(2):Lagrange Duality求解线性可分SVM的最佳边界
在上篇文章<Support Vector Machine(1):线性可分集的决策边界>中,我们最后得到,求SVM最佳Margin的问题,转化为了如下形式: 到这一步后,我个人又花了很长的时 ...
- 拉格朗日对偶性(Lagrange duality)
目录 拉格朗日对偶性(Lagrange duality) 1. 从原始问题到对偶问题 2. 弱对偶与强对偶 3. KKT条件 Reference: 拉格朗日对偶性(Lagrange duality) ...
- 机器学习经典算法详解及Python实现--基于SMO的SVM分类器
原文:http://blog.csdn.net/suipingsp/article/details/41645779 支持向量机基本上是最好的有监督学习算法,因其英文名为support vector ...
- 拉格朗日对偶(Lagrange duality)
拉格朗日对偶(Lagrange duality) 存在等式约束的极值问题求法,比如下面的最优化问题: 目标函数是f(w),下面是等式约束.通常解法是引入拉格朗日算子,这里使用 ...
- 菜鸟之路——机器学习之SVM分类器学习理解以及Python实现
SVM分类器里面的东西好多呀,碾压前两个.怪不得称之为深度学习出现之前表现最好的算法. 今天学到的也应该只是冰山一角,懂了SVM的一些原理.还得继续深入学习理解呢. 一些关键词: 超平面(hyper ...
- 自己训练SVM分类器进行HOG行人检测
正样本来源是INRIA数据集中的96*160大小的人体图片,使用时上下左右都去掉16个像素,截取中间的64*128大小的人体. 负样本是从不包含人体的图片中随机裁取的,大小同样是64*128(从完全不 ...
- Python图像处理(15):SVM分类器
快乐虾 http://blog.csdn.net/lights_joy/ 欢迎转载,但请保留作者信息 在opencv中支持SVM分类器.本文尝试在python中调用它. 和前面的贝叶斯分类器一样,SV ...
- 线性SVM分类器实战
1 概述 基础的理论知识参考线性SVM与Softmax分类器. 代码实现环境:python3 2 数据处理 2.1 加载数据集 将原始数据集放入"data/cifar10/"文件夹 ...
随机推荐
- RabbitMq应用二
在应用一中,基本的消息队列使用已经完成了,在实际项目中,一定会出现各种各样的需求和问题,rabbitmq内置的很多强大机制和功能会帮助我们解决很多的问题,下面就一个一个的一起学习一下. 消息响应机制 ...
- 一起学 Java(三) 集合框架、数据结构、泛型
一.Java 集合框架 集合框架是一个用来代表和操纵集合的统一架构.所有的集合框架都包含如下内容: 接口:是代表集合的抽象数据类型.接口允许集合独立操纵其代表的细节.在面向对象的语言,接口通常形成一个 ...
- BZOJ 1911: [Apio2010]特别行动队 [斜率优化DP]
1911: [Apio2010]特别行动队 Time Limit: 4 Sec Memory Limit: 64 MBSubmit: 4142 Solved: 1964[Submit][Statu ...
- POCO Controller 你这么厉害,ASP.NET vNext 知道吗?
写在前面 阅读目录: POCO 是什么? 为什么会有 POJO? POJO 的意义 POJO 与 PO.VO 的区别 POJO 的扩展 POCO VS DTO Controller 是什么? 关于 P ...
- gradle学习笔记(1)
1. 安装 (1) 下载最新gradle压缩包,解压到某处.地址是:Gradle web site: (2) 添加环境变量: 1) 变量名:GRADLE_HOM ...
- 第一个shell脚本
打开文本编辑器,新建一个文件,扩展名为sh(sh代表shell),扩展名并不影响脚本执行,见名知意就好. #!/bin/bash echo "Hello World !" &quo ...
- 伪共享(false sharing),并发编程无声的性能杀手
在并发编程过程中,我们大部分的焦点都放在如何控制共享变量的访问控制上(代码层面),但是很少人会关注系统硬件及 JVM 底层相关的影响因素.前段时间学习了一个牛X的高性能异步处理框架 Disruptor ...
- ASP.NET Core 中文文档 第四章 MVC(4.5)测试控制器逻辑
原文: Testing Controller Logic 作者: Steve Smith 翻译: 姚阿勇(Dr.Yao) 校对: 高嵩(Jack) ASP.NET MVC 应用程序的控制器应当小巧并专 ...
- 由js apply与call方法想到的js数据类型(原始类型和引用类型)
原文地址:由js apply与call方法想到的js数据类型(原始类型和引用类型) js的call方法与apply方法的区别在于第二个参数的不同,他们都有2个参数,第一个为对象(即需要用对象a继承b, ...
- Linux 权限设置chmod
Linux中设置权限,一般用chmod命令 1.介绍 权限设置chmod 功能:改变权限命令.常用参数: 1=x(执行权execute) 2=w(写权write) 4=r(读权Read) setuid ...