1120 . 机器人走方格 V3
 
基准时间限制:1 秒 空间限制:65536 KB 分值: 160
N * N的方格,从左上到右下画一条线。一个机器人从左上走到右下,只能向右或向下走。并要求只能在这条线的上面或下面走,不能穿越这条线,有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 10007的结果。

 
Input
输入一个数N(2 <= N <= 10^9)。
Output
输出走法的数量 Mod 10007。
Input 示例
4
Output 示例
10

思路:实际是本质就是,n个0,n个1,序列中1的个数小于等于0.
和string是同一类型题。c(n+m,n)-c(n+m,n-1);
这题需要*2;
由于mod = 10007;
 /**C(n+m,n)-C(n+m,n-1)**/
#include<iostream>
#include<stdio.h>
#include<cstring>
#include<cstdlib>
using namespace std;
typedef __int64 LL; const LL p = ;
LL dp[];
void init()
{
int i;
dp[]=;
for(i=;i<=;i++)
dp[i]=(dp[i-]*i)%p;
}
LL pow_mod(LL a,LL n)
{
LL ans=;
a=a%p;
while(n)
{
if(n&) ans=(ans*a)%p;
n=n>>;
a=(a*a)%p;
}
return ans;
}
LL C(LL n,LL m)
{
if(n<m)return ;
if(m>n-m) m=n-m;
LL sum1=dp[n];
LL sum2=(dp[m]*dp[n-m])%p;
sum1 = (sum1*pow_mod(sum2,p-))%p;
return sum1;
}
LL Lucas(LL n,LL m)
{
LL ans=;
while(n&&m&&ans)
{
ans=(ans*C(n%p,m%p))%p;
n=n/p;
m=m/p;
}
return ans;
}
int main()
{
init();
LL n;
while(scanf("%I64d",&n)>)
{
n=n-;
LL ans=Lucas(n+n,n);
LL cur=Lucas(n+n,n-);
ans=ans-cur;
if(ans<) ans=ans+p;
ans=(ans*)%p;
printf("%I64d\n",ans);
}
return ;
}

对比

Garden visiting

http://acm-hit.sunner.cn/judge/show.php?Proid=2813

C(n+m-2,n-1)%p;

机器人走方格 V3的更多相关文章

  1. 51nod1120 机器人走方格 V3

    跟括号序列是一样的,将向右走看成是左括号向左走看成是右括号就可以了.那么就是卡特兰数了.然后由于n和m太大所以用了lucas定理 //跟括号序列是一样的,将向右走看成是左括号向左走看成是右括号就可以了 ...

  2. 51nod 1120 机器人走方格V3

    1120 机器人走方格 V3  基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题  收藏  关注 N * N的方格,从左上到右下画一条线.一个机器人从左上走到右下,只 ...

  3. 1120 机器人走方格 V3

    1120 机器人走方格 V3 基准时间限制:1 秒 空间限制:131072 KB N * N的方格,从左上到右下画一条线.一个机器人从左上走到右下,只能向右或向下走.并要求只能在这条线的上面或下面走, ...

  4. 51nod 1120 机器人走方格 V3 卡特兰数 lucas定理

    N * N的方格,从左上到右下画一条线.一个机器人从左上走到右下,只能向右或向下走.并要求只能在这条线的上面或下面走,不能穿越这条线,有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 100 ...

  5. 51nod 1120 机器人走方格 V3

    N * N的方格,从左上到右下画一条线.一个机器人从左上走到右下,只能向右或向下走. 并要求只能在这条线的上面或下面走,不能穿越这条线,有多少种不同的走法? 由于方法数量可能很大,只需要输出Mod 1 ...

  6. 1120 机器人走方格 V3(组合数)

    题目实际上是求catalan数的,Catalan[n] = C(2*n,n) / (n+1) = C(2*n,n) % mod * inv[n+1],inv[n+1]为n+1的逆元,根据费马小定理,可 ...

  7. 51nod_1120:机器人走方格 V3

    题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1120 Catalan数 基础题,ans=C(2n-2,n-2 ...

  8. 51Nod 机器人走方格 V3 —— 卡特兰数、Lucas定理

    题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1120 题解: 1.看到这种题,马上就想到了卡特兰数.但卡特兰数 ...

  9. 51nod 1120 机器人走方格 V3 【卡特兰数+卢卡斯定理+组合数】

    -我并不知道为什么事卡特兰数,反正用dp打的表就是卡特兰数,因为是两个三角所以再乘个2 卡特兰数使用\( h(n)=\frac{C_{2n}^{n}}{n+1} \)因为范围比较大所以组合数部分用卢卡 ...

随机推荐

  1. android中的权限(转)

    Android权限系统非常庞大,我们在Android系统中做任何操作都需要首先获取Android系统权限,本文记录了所有的Android权限问题,整理一下分享给大家. 访问登记属性 android.p ...

  2. oracle的簇的管理

    使用ALTER修改簇属性(必须拥有ALTER ANY CLUSTER的权限) 1.修改簇属性 可以修改的簇属性包括: * PCTFREE.PCTUSED.INITRANS.MAXTRANS.STORA ...

  3. 161104、NoSQL数据库:key/value型之levelDB介绍及java实现

    简介:Leveldb是一个google实现的非常高效的kv数据库,能够支持billion级别的数据量了. 在这个数量级别下还有着非常高的性能,主要归功于它的良好的设计.特别是LSM算法.LevelDB ...

  4. 160906、Dubbo与Zookeeper、SpringMVC整合和使用(负载均衡、容错)

    互联网的发展,网站应用的规模不断扩大,常规的垂直应用架构已无法应对,分布式服务架构以及流动计算架构势在必行,Dubbo是一个分布式服务框架,在这种情况下诞生的.现在核心业务抽取出来,作为独立的服务,使 ...

  5. Unicode : RLO

    分类:备忘,Unicode,Perl 我们一般的输入文字的方向是从左往右,但是世界上总有特例,阿拉伯国家是从右到左的书写方式.经常看到微信里面好友得瑟,也就拿过来总结一下. 每个语言都能实现字符串反转 ...

  6. Web Token JWT

    基于Token的WEB后台认证机制 JSON Web Token in ASP.NET Web API 2 using Owin 翻译:Token Authentication in ASP.NET ...

  7. 2.1:你的第一个AngularJS App

    本章,带你体验一个简单的开发流程,将一个静态的使用模拟数据的应用,变成具有AngularJS特性的动态web应用.在6-8章,作者将展示如何创建一个更复杂,更真实的AngularJS应用. 1.准备项 ...

  8. Linux批量修改用户密码

    对系统定期修改密码是一个很重要的安全常识,通常,我们修改用户密码都使用passwd user这样的命名来修改密码,但是这样会进入交互模式,即使使用脚本也不能很方便的批量修改,除非使用expect这样的 ...

  9. 怎么使用 Laravel 的服务容器来优化读写数据库中的 options关键词

    其中我们可以最方便地利用的一个特性就是 Laravel 的服务容器了.在这里我不多赘述 Service Container 是个啥,想了解的可以自行搜索.不想了解的就只要大致知道它是个可以 绑定/取出 ...

  10. ecshop简单三部实现导航分类二级菜单

    1.在page_header.lbi对应的位置(你想显示导航的位置)插入 (注意下面的"themes/模板名称/util.php"中的"模板名称"改成你模板文件 ...