判断两条线段是否相交

主要用到了通过向量积的正负判断两个向量位置关系

向量a×向量b(×为向量叉乘),若结果小于0,表示向量b在向量a的顺时针方向;若结果大于0,表示向量b在向量a的逆时针方向;若等于0,表示向量a与向量b平行

主要代码参考自文末链接,但是他并没有给出跨立检验函数的具体内容,因此补充了一下放在下面

using System;
using System.Collections.Generic;
using System.Windows;
using System.Linq;
using System.Text;
using System.Threading.Tasks; namespace lineTest
{
class Program
{
public struct Point
{
public double X;
public double Y; public Point(double x, double y)
{
X = x;
Y = y;
}
} static void Main(string[] args)
{
Point a = new Point(0, 0);
Point b = new Point(100, 100);
Point c = new Point(100,0);
Point d = new Point(50,49);
var result = IsIntersect(a, b, c, d);
} public static Point? GetIntersection(Point lineAStart, Point lineAEnd, Point lineBStart, Point lineBEnd)
{
double x1 = lineAStart.X, y1 = lineAStart.Y;
double x2 = lineAEnd.X, y2 = lineAEnd.Y; double x3 = lineBStart.X, y3 = lineBStart.Y;
double x4 = lineBEnd.X, y4 = lineBEnd.Y; //equations of the form x=c (two vertical lines)
if (x1 == x2 && x3 == x4 && x1 == x3)
{
return null;
} //equations of the form y=c (two horizontal lines)
if (y1 == y2 && y3 == y4 && y1 == y3)
{
return null;
} //equations of the form x=c (two vertical lines)
if (x1 == x2 && x3 == x4)
{
return null;
} //equations of the form y=c (two horizontal lines)
if (y1 == y2 && y3 == y4)
{
return null;
}
double x, y; if (x1 == x2)
{
double m2 = (y4 - y3) / (x4 - x3);
double c2 = -m2 * x3 + y3; x = x1;
y = c2 + m2 * x1;
}
else if (x3 == x4)
{
double m1 = (y2 - y1) / (x2 - x1);
double c1 = -m1 * x1 + y1; x = x3;
y = c1 + m1 * x3;
}
else
{
//compute slope of line 1 (m1) and c2
double m1 = (y2 - y1) / (x2 - x1);
double c1 = -m1 * x1 + y1; //compute slope of line 2 (m2) and c2
double m2 = (y4 - y3) / (x4 - x3);
double c2 = -m2 * x3 + y3; x = (c1 - c2) / (m2 - m1);
y = c2 + m2 * x;
} if (IsInsideLine(lineAStart, lineAEnd, x, y) &&
IsInsideLine(lineBStart, lineBEnd, x, y))
{
return new Point(x, y);
} //return default null (no intersection)
return null;
}
private static bool IsInsideLine(Point start, Point end, double x, double y)
{
return ((x >= start.X && x <= end.X)
|| (x >= end.Y && x <= start.Y))
&& ((y >= start.Y && y <= end.Y)
|| (y >= end.Y && y <= start.Y));
} public static bool IsIntersect(Point p1, Point p2, Point q1, Point q2)
{
//排斥试验,判断p1p2在q1q2为对角线的矩形区之外
if (Math.Max(p1.X, p2.X) < Math.Min(q1.X, q2.X))
{//P1P2中最大的X比Q1Q2中的最小X还要小,说明P1P2在Q1Q2的最左点的左侧,不可能相交。
return false;
} if (Math.Min(p1.X, p2.X) > Math.Max(q1.X, q2.X))
{//P1P2中最小的X比Q1Q2中的最大X还要大,说明P1P2在Q1Q2的最右点的右侧,不可能相交。
return false;
} if (Math.Max(p1.Y, p2.Y) < Math.Min(q1.Y, q2.Y))
{//P1P2中最大的Y比Q1Q2中的最小Y还要小,说明P1P2在Q1Q2的最低点的下方,不可能相交。
return false;
} if (Math.Min(p1.Y, p2.Y) > Math.Max(q1.Y, q2.Y))
{//P1P2中最小的Y比Q1Q2中的最大Y还要大,说明P1P2在Q1Q2的最高点的上方,不可能相交。
return false;
} //跨立试验
var crossP1P2Q1 = VectorCross(p1, p2, q1);
var crossP1Q2P2 = VectorCross(p1, q2, p2);
var crossQ1Q2P1 = VectorCross(q1, q2, p1);
var crossQ1P2Q2 = VectorCross(q1, p2, q2); bool isIntersect = (crossP1P2Q1 * crossP1Q2P2 >= 0) && (crossQ1Q2P1 * crossQ1P2Q2 >= 0);
return isIntersect;
} private static double VectorCross(Point p1, Point p2, Point p3)
{
Vector vectorP1 = new Vector(p1.X, p1.Y);
Vector vectorP2 = new Vector(p2.X, p2.Y);
Vector vectorP3 = new Vector(p3.X, p3.Y);
Vector vectorP1P2 = Vector.Subtract(vectorP2, vectorP1);
Vector vectorP1P3 = Vector.Subtract(vectorP3, vectorP1);
return Vector.CrossProduct(vectorP1P2, vectorP1P3);
}
}
}

参考

https://blog.csdn.net/weixin_33973609/article/details/93580049

https://www.cnblogs.com/tuyang1129/p/9390376.html

[CSharpTips]判断两条线段是否相交的更多相关文章

  1. Pick-up sticks(判断两条线段是否相交)

    Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 8351 Accepted: 3068 Description Stan has ...

  2. c# 判断两条线段是否相交(判断地图多边形是否相交)

    private void button1_Click(object sender, EventArgs e) { //var result = intersect3(point1, point2, p ...

  3. 计算几何--判断两条线段相交--poj 2653

    Pick-up sticks Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 8862   Accepted: 3262 De ...

  4. 求两条线段交点zz

    "求线段交点"是一种非常基础的几何计算, 在很多游戏中都会被使用到. 下面我就现学现卖的把最近才学会的一些"求线段交点"的算法说一说, 希望对大家有所帮助. 本 ...

  5. 平面内,线与线 两条线找交点 两条线段的位置关系(相交)判定与交点求解 C#

    个人亲自编写.测试,可以正常使用   道理看原文,这里不多说   网上找到的几篇基本都不能用的   C#代码 bool Equal(float f1, float f2) { return (Math ...

  6. 两条线段求交点+叉积求面积 poj 1408

    题目链接:https://vjudge.net/problem/POJ-1408 题目是叫我们求出所有四边形里最大的那个的面积. 思路:因为这里只给了我们正方形四条边上的点,所以我们要先计算横竖线段两 ...

  7. 判断线段和直线相交 POJ 3304

    // 判断线段和直线相交 POJ 3304 // 思路: // 如果存在一条直线和所有线段相交,那么平移该直线一定可以经过线段上任意两个点,并且和所有线段相交. #include <cstdio ...

  8. 判断直线与线段相交 POJ 3304 Segments

    题意:在二维平面中,给定一些线段,然后判断在某直线上的投影是否有公共点. 转化,既然是投影,那么就是求是否存在一条直线L和所有的线段都相交. 证明: 下面给出具体的分析:先考虑一个特殊的情况,即n=1 ...

  9. JVM-如何判断一段数据是真正的数据,还是对象的引用

    JVM 判断一段数据到底是数据还是引用类型,首先要看JVM选择用什么方式.通常这个选择会影响到GC的实现. 一.保守式 如果JVM选择不记录任何这种类型的数据,那么它就无法区分内存里某个位置上的数据到 ...

随机推荐

  1. Java包机制和JavaDoc

    目录 包机制 JavaDoc 视频课程 包机制 包的本质就是文件夹 为了更好的组织类, Java提供了包机制, 用于区别类名的命名空间, 使项目看起来更加整洁 一般公司庸域名倒置作为包名 为了能够使用 ...

  2. Linux Cgroup v1(中文翻译)(2):CPUSETS

    英文原文:https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v1/cpusets.html Copyright (C) 2004 BU ...

  3. CabloyJS 基于 EggJS 实现的模块编译与发布

    背景 现在,EggJS被许多开发团队所采用.有的团队基于商业知识产权的考量,往往会提一个问题:是否可以把EggJS当中的代码编译打包,然后再把代码丑化? 模块编译的机制 EggJS为何不能便利的实现编 ...

  4. 一文掌握软件安全必备技术 SAST

    上一篇文章中,我们讨论了软件供应链的概念并了解到近年来软件供应链安全事件层出不穷.为了保障软件供应链安全,我们需要了解网络安全领域中的一些主要技术.本篇文章将介绍其中一个重要技术--SAST. 当开发 ...

  5. Vue几行代码实现搜索功能

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  6. 【python基础】第11回 数据类型内置方法 02

    本章内容概要 列表内置方法 字典内置方法 元组内置方法 集合内置方法 可变类型与不可变类型 本章内容详细 1.列表内置方法 list 列表在调用内置方法之后不会产生新的值 1.1 统计列表中的数据值的 ...

  7. python+requests+yaml实现接口自动化用例

    前言:最近也思考了一下怎么做接口自动化,以下内容属于自己目前阶段所学习到的内容,也逐渐投入自己实际工作中,把最近的学习新得跟大家分享下,话不多说,切入正题. 对接口自动化测试用例的思考:接口测试大多测 ...

  8. 深入理解 volatile 关键字

    volatile 关键字是 Java 语言的高级特性,但要弄清楚其工作原理,需要先弄懂 Java 内存模型.如果你之前没了解过 Java 内存模型,那可以先看看之前我写过的一篇「深入理解 Java 内 ...

  9. 『现学现忘』Docker基础 — 41、将本地镜像推送到阿里云

    目录 1.准备工作 2.阿里云容器镜像仓库的使用 (1)创建命名空间 (2)创建容器镜像 (3)查看阿里云镜像仓库的信息 3.将本地Docker镜像推送到阿里云 (1)登陆阿里云 (2)给镜像生成版本 ...

  10. CentOS yum命令404

    1.获得新的repo列表文件 http://mirrors.163.com/.help/centos.html 2.备份 mv /etc/yum.repos.d/CentOS-Base.repo Ce ...