论文信息

论文标题:Semi-Supervised Learning of Visual Features by Non-Parametrically Predicting View Assignments with Support Samples
论文作者:Mahmoud AssranMathilde CaronIshan MisraPiotr BojanowskiArmand JoulinNicolas Ballas
论文来源:NeurIPS 2021
论文地址:download 
论文代码:download
视屏讲解:click

1 介绍

  提出问题:充分利用无标注目标;

  解决办法:对无标注数据使用一种可信的伪标签策略;

2 方法

2.1 整体框架

  

2.2 问题定义

  We consider a large dataset of unlabeled images  $\mathcal{D}=   \left(\mathrm{x}_{i}\right)_{i \in[1, N]}$  and a small support dataset of annotated images  $\mathcal{S}=\left(\mathbf{x}_{s i}, y_{i}\right)_{i \in[1, M]}$ , with  $M \ll N  $.Our goal is to learn image representations by leveraging both  $\mathcal{D}$  and  $\mathcal{S}$  during pretraining. After pre-training with  $\mathcal{D}$  and  $\mathcal{S}$ , we fine-tune the learned representations using only the labeled set  $\mathcal{S}$ .

2.3 相似度分类器

  公式:

    $\pi_{d}\left(z_{i}, \mathbf{z}_{\mathcal{S}}\right)=\sum_{\left(z_{s_{j}}, y_{j}\right) \in \mathbf{z}_{\mathcal{S}}}\left(\frac{d\left(z_{i}, z_{s j}\right)}{\sum_{z_{s k} \in \mathbf{z}_{\mathcal{S}}} d\left(z_{i}, z_{s k}\right)}\right) y_{j}$

  Note:Soft Nearest Neighbours strategy

  其中:

    $d(a, b) =\exp \left( \frac{a^{T} b}{\|a\|\|b\| \tau} \right)$

  简化:

    $p_{i}:=\pi_{d}\left(z_{i}, \mathbf{z}_{\mathcal{S}}\right)=\sigma_{\tau}\left(z_{i} \mathbf{z}_{\mathcal{S}}^{\top}\right) \mathbf{y}_{\mathcal{S}}$

  Note:$p_{i} \in[0,1]^{K}$

  锐化:

    $\left[\rho\left(p_{i}\right)\right]_{k}:=\frac{\left[p_{i}\right]_{k}^{1 / T}}{\sum_{j=1}^{K}\left[p_{i}\right]_{j}^{1 / T}}, \quad k=1, \ldots, K$

  Note:锐化目标会鼓励网络产生自信的预测,避免模型崩溃问题。

2.4 训练目标

  总目标:

    $\frac{1}{2 n} \sum_{i=1}^{n}\left(H\left(\rho\left(p_{i}^{+}\right), p_{i}\right)+H\left(\rho\left(p_{i}\right), p_{i}^{+}\right)\right)-H(\bar{p})$

  ME-MAX 正则化项:$H(\bar{p})$

  其中:

    $\bar{p}:=\frac{1}{2 n} \sum_{i=1}^{n}\left(\rho\left(p_{i}\right)+\right.   \left.\rho\left(p_{i}^{+}\right)\right) $ 表示所有未标记表示的锐化预测的平均值;

  该正则化项在鼓励个体预测有信心的同时,鼓励平均预测接近均匀分布。ME-MAX 正则化项之前已在判别式无监督聚类社区中用于平衡学习的聚类大小[35]。

  Note:交叉熵

# Example of target with class indices
loss = nn.CrossEntropyLoss()
input = torch.randn(3, 5, requires_grad=True)
target = torch.empty(3, dtype=torch.long).random_(5)
output = loss(input, target)
output.backward()
# Example of target with class probabilities
input = torch.randn(3, 5, requires_grad=True)
target = torch.randn(3, 5).softmax(dim=1)
output = loss(input, target)
output.backward()

3 总结

  略

论文解读(PAWS)《Semi-Supervised Learning of Visual Features by Non-Parametrically Predicting View Assignments with Support Samples》的更多相关文章

  1. 【论文阅读】Deep Clustering for Unsupervised Learning of Visual Features

    文章:Deep Clustering for Unsupervised Learning of Visual Features 作者:Mathilde Caron, Piotr Bojanowski, ...

  2. 论文解读《Momentum Contrast for Unsupervised Visual Representation Learning》俗称 MoCo

    论文题目:<Momentum Contrast for Unsupervised Visual Representation Learning> 论文作者: Kaiming He.Haoq ...

  3. 论文解读《Deep Resdual Learning for Image Recognition》

    总的来说这篇论文提出了ResNet架构,让训练非常深的神经网络(NN)成为了可能. 什么是残差? "残差在数理统计中是指实际观察值与估计值(拟合值)之间的差."如果回归模型正确的话 ...

  4. 【公式详解】【优秀论文解读】EDPLVO: Efficient Direct Point-Line Visual Odometry

    前言 多的不说哈 2022最佳优秀论文 来自美团无人机团队 作者提出了一种使用点和线的高效的直接视觉里程计(visual odometry,VO)算法-- EDPLVO .他们证明了,2D 线上的 3 ...

  5. 论文解读(SimCLR)《A Simple Framework for Contrastive Learning of Visual Representations》

    1 题目 <A Simple Framework for Contrastive Learning of Visual Representations> 作者: Ting Chen, Si ...

  6. 自监督学习(Self-Supervised Learning)多篇论文解读(下)

    自监督学习(Self-Supervised Learning)多篇论文解读(下) 之前的研究思路主要是设计各种各样的pretext任务,比如patch相对位置预测.旋转预测.灰度图片上色.视频帧排序等 ...

  7. 自监督学习(Self-Supervised Learning)多篇论文解读(上)

    自监督学习(Self-Supervised Learning)多篇论文解读(上) 前言 Supervised deep learning由于需要大量标注信息,同时之前大量的研究已经解决了许多问题.所以 ...

  8. 论文解读(BYOL)《Bootstrap Your Own Latent A New Approach to Self-Supervised Learning》

    论文标题:Bootstrap Your Own Latent A New Approach to Self-Supervised Learning 论文方向:图像领域 论文来源:NIPS2020 论文 ...

  9. 论文笔记之:Action-Decision Networks for Visual Tracking with Deep Reinforcement Learning

    论文笔记之:Action-Decision Networks for Visual Tracking with Deep Reinforcement Learning  2017-06-06  21: ...

  10. Deep Reinforcement Learning for Visual Object Tracking in Videos 论文笔记

    Deep Reinforcement Learning for Visual Object Tracking in Videos 论文笔记 arXiv 摘要:本文提出了一种 DRL 算法进行单目标跟踪 ...

随机推荐

  1. C# 锁汇总

    一.前言 本文章汇总c#中常见的锁,基本都列出了该锁在微软官网的文章,一些不常用的锁也可以参考微软文章左侧的列表,方便温习回顾. 二.锁的分类 2.1.用户模式锁 1.volatile 关键字 vol ...

  2. 用JS实现一个简单的购物车小案例

    该案例主要是实现的功能有:添加商品功能,将商品添加到购物车的功能还有将商品删除功能,还有就是移出购物车的功能 该案例实现的难点是将商品添加到购物车列表的时候 数量的增加,当购物车有该商品的时候就进行累 ...

  3. PTA·电信计费系列问题总结

    一.题目涉及的知识点 1.容器的使用 2.抛出异常 3.抽象类 4.继承与多态 5.正则表达式 二.题目分析总结 1.题目集08:7-1 电信计费系列1-座机计费 实现一个简单的电信计费程序:假设南昌 ...

  4. 实验1.SDN拓扑实践

    实验1:SDN拓扑实践 一.基本要求 (一)Mininet运行结果截图 (二) 使用Mininet的命令行生成如下拓扑: 1. 3台交换机,每个交换机连接1台主机,3台交换机连接成一条线. 2. 3台 ...

  5. HDF格式遥感影像批量转为TIFF格式:ArcPy实现

      本文介绍基于Python中ArcPy模块,实现大量HDF格式栅格图像文件批量转换为TIFF格式的方法.   首先,来看看我们想要实现的需求.   在一个名为HDF的文件夹下,有五个子文件夹:每一个 ...

  6. Python批量采集百度资讯文章,如何自定义采集日期范围

    01 引言 大家好!蜡笔小曦有个朋友是做能源相关工作的,她想要有一个工具以天为单位持续地采集百度资讯中能源相关的文章进行留存和使用. 其中有个需求点是说能够自定义采集的开始日期和结束日期,这样更加灵活 ...

  7. 10.4 提高叠加处理速度(2) (harib07d)

    ps:能力有限,若有错误及纰漏欢迎指正.交流 sheet_refreshsub void sheet_refreshsub(struct SHTCTL *ctl, int vx0, int vy0, ...

  8. js直接操作数据库会怎么样

    这几天刷脉脉的时候看到一个话题初看觉得可笑,再看陷入沉思,最后还是决定花点时间想清楚,写下来. 确实没见人这么干过,为什么呢? 技术限制 被技术限制了?据我所知目前没有面向js的数据库驱动,但反观现在 ...

  9. K8S安全学习

    k8s安全学习 一.云 云的定义看似模糊,但本质上,它是一个用于描述全球服务器网络的术语,每个服务器都有一个独特的功能.云不是一个物理实体,而是一个庞大的全球远程服务器网络,它们连接在一起,旨在作为单 ...

  10. React的组件化/工程化开发(脚手架)

    脚手架: create-react-app 安装脚手架: $ npm i create-react-app -g 检查安装: $ npm create-react-app --version 新建项目 ...