论文信息

论文标题:Semi-Supervised Learning of Visual Features by Non-Parametrically Predicting View Assignments with Support Samples
论文作者:Mahmoud AssranMathilde CaronIshan MisraPiotr BojanowskiArmand JoulinNicolas Ballas
论文来源:NeurIPS 2021
论文地址:download 
论文代码:download
视屏讲解:click

1 介绍

  提出问题:充分利用无标注目标;

  解决办法:对无标注数据使用一种可信的伪标签策略;

2 方法

2.1 整体框架

  

2.2 问题定义

  We consider a large dataset of unlabeled images  $\mathcal{D}=   \left(\mathrm{x}_{i}\right)_{i \in[1, N]}$  and a small support dataset of annotated images  $\mathcal{S}=\left(\mathbf{x}_{s i}, y_{i}\right)_{i \in[1, M]}$ , with  $M \ll N  $.Our goal is to learn image representations by leveraging both  $\mathcal{D}$  and  $\mathcal{S}$  during pretraining. After pre-training with  $\mathcal{D}$  and  $\mathcal{S}$ , we fine-tune the learned representations using only the labeled set  $\mathcal{S}$ .

2.3 相似度分类器

  公式:

    $\pi_{d}\left(z_{i}, \mathbf{z}_{\mathcal{S}}\right)=\sum_{\left(z_{s_{j}}, y_{j}\right) \in \mathbf{z}_{\mathcal{S}}}\left(\frac{d\left(z_{i}, z_{s j}\right)}{\sum_{z_{s k} \in \mathbf{z}_{\mathcal{S}}} d\left(z_{i}, z_{s k}\right)}\right) y_{j}$

  Note:Soft Nearest Neighbours strategy

  其中:

    $d(a, b) =\exp \left( \frac{a^{T} b}{\|a\|\|b\| \tau} \right)$

  简化:

    $p_{i}:=\pi_{d}\left(z_{i}, \mathbf{z}_{\mathcal{S}}\right)=\sigma_{\tau}\left(z_{i} \mathbf{z}_{\mathcal{S}}^{\top}\right) \mathbf{y}_{\mathcal{S}}$

  Note:$p_{i} \in[0,1]^{K}$

  锐化:

    $\left[\rho\left(p_{i}\right)\right]_{k}:=\frac{\left[p_{i}\right]_{k}^{1 / T}}{\sum_{j=1}^{K}\left[p_{i}\right]_{j}^{1 / T}}, \quad k=1, \ldots, K$

  Note:锐化目标会鼓励网络产生自信的预测,避免模型崩溃问题。

2.4 训练目标

  总目标:

    $\frac{1}{2 n} \sum_{i=1}^{n}\left(H\left(\rho\left(p_{i}^{+}\right), p_{i}\right)+H\left(\rho\left(p_{i}\right), p_{i}^{+}\right)\right)-H(\bar{p})$

  ME-MAX 正则化项:$H(\bar{p})$

  其中:

    $\bar{p}:=\frac{1}{2 n} \sum_{i=1}^{n}\left(\rho\left(p_{i}\right)+\right.   \left.\rho\left(p_{i}^{+}\right)\right) $ 表示所有未标记表示的锐化预测的平均值;

  该正则化项在鼓励个体预测有信心的同时,鼓励平均预测接近均匀分布。ME-MAX 正则化项之前已在判别式无监督聚类社区中用于平衡学习的聚类大小[35]。

  Note:交叉熵

# Example of target with class indices
loss = nn.CrossEntropyLoss()
input = torch.randn(3, 5, requires_grad=True)
target = torch.empty(3, dtype=torch.long).random_(5)
output = loss(input, target)
output.backward()
# Example of target with class probabilities
input = torch.randn(3, 5, requires_grad=True)
target = torch.randn(3, 5).softmax(dim=1)
output = loss(input, target)
output.backward()

3 总结

  略

论文解读(PAWS)《Semi-Supervised Learning of Visual Features by Non-Parametrically Predicting View Assignments with Support Samples》的更多相关文章

  1. 【论文阅读】Deep Clustering for Unsupervised Learning of Visual Features

    文章:Deep Clustering for Unsupervised Learning of Visual Features 作者:Mathilde Caron, Piotr Bojanowski, ...

  2. 论文解读《Momentum Contrast for Unsupervised Visual Representation Learning》俗称 MoCo

    论文题目:<Momentum Contrast for Unsupervised Visual Representation Learning> 论文作者: Kaiming He.Haoq ...

  3. 论文解读《Deep Resdual Learning for Image Recognition》

    总的来说这篇论文提出了ResNet架构,让训练非常深的神经网络(NN)成为了可能. 什么是残差? "残差在数理统计中是指实际观察值与估计值(拟合值)之间的差."如果回归模型正确的话 ...

  4. 【公式详解】【优秀论文解读】EDPLVO: Efficient Direct Point-Line Visual Odometry

    前言 多的不说哈 2022最佳优秀论文 来自美团无人机团队 作者提出了一种使用点和线的高效的直接视觉里程计(visual odometry,VO)算法-- EDPLVO .他们证明了,2D 线上的 3 ...

  5. 论文解读(SimCLR)《A Simple Framework for Contrastive Learning of Visual Representations》

    1 题目 <A Simple Framework for Contrastive Learning of Visual Representations> 作者: Ting Chen, Si ...

  6. 自监督学习(Self-Supervised Learning)多篇论文解读(下)

    自监督学习(Self-Supervised Learning)多篇论文解读(下) 之前的研究思路主要是设计各种各样的pretext任务,比如patch相对位置预测.旋转预测.灰度图片上色.视频帧排序等 ...

  7. 自监督学习(Self-Supervised Learning)多篇论文解读(上)

    自监督学习(Self-Supervised Learning)多篇论文解读(上) 前言 Supervised deep learning由于需要大量标注信息,同时之前大量的研究已经解决了许多问题.所以 ...

  8. 论文解读(BYOL)《Bootstrap Your Own Latent A New Approach to Self-Supervised Learning》

    论文标题:Bootstrap Your Own Latent A New Approach to Self-Supervised Learning 论文方向:图像领域 论文来源:NIPS2020 论文 ...

  9. 论文笔记之:Action-Decision Networks for Visual Tracking with Deep Reinforcement Learning

    论文笔记之:Action-Decision Networks for Visual Tracking with Deep Reinforcement Learning  2017-06-06  21: ...

  10. Deep Reinforcement Learning for Visual Object Tracking in Videos 论文笔记

    Deep Reinforcement Learning for Visual Object Tracking in Videos 论文笔记 arXiv 摘要:本文提出了一种 DRL 算法进行单目标跟踪 ...

随机推荐

  1. wait_event_interruptible() 等待队列

    在Linux驱动程序中,可以使用等待队列(Wait Queue)来实现阻塞进程的唤醒. 1.定义"等待队列头部" wait_queue_head_t my_queue; wait_ ...

  2. Redis5.0.4-集群(单机版)搭建

    最近尝试搭建了一下redis集群,这里记录一下,最后附上的是参考的博客地址. 安装C语言编译环境GCC yum install -y gcc-c++ 下载redis并编译安装 下载: wget htt ...

  3. 【QT5】学习整理包含引用资料

    视频学习资料 [[6天学会QT] 视频教程及QT5.11.1安装包安装方法][含代码]](https://www.bilibili.com/video/BV1hg4y1B7Vu?from=search ...

  4. 关于TCP协议传文件的例子

    按照惯例,先来进行复习,这也是自学巩固的一个过程 首先是在工程文件PRO里,需要增加network,这个是引用TCP监听套接字和连接套接字的前提 第二部,在服务端头文件server.h进行基础的配置: ...

  5. 转发:Midway Serverless 发布 2.0,一体化让前端研发再次提效

    自去年 Midway Serverless 1.0 发布之后,许多业务开始尝试其中,并利用 Serverless 容器的弹性能力,减少了大量研发人员对基础设施和运维的关注.对前端开发者而言,他们只需写 ...

  6. Unity检测鼠标是否与UI交互

    在Unity项目中,假设在鼠标按键时会触发游戏内的操作,但是在鼠标与UI进行交互时我们希望停止游戏中的操作,这是需要使用EventSystem中的方法来检测鼠标是否正在与UI交互 private bo ...

  7. Linux系统mysql免安装版配置指南

    1.下载(/usr/local目录) wget https://dev.mysql.com/get/Downloads/MySQL-5.7/mysql-5.7.32-linux-glibc2.12-x ...

  8. ImageUtils excel 中 emf 转图片(解决图片上部分显示不全问题)图片转文字

    excel 中ActiveX 工具 中的textbox  ,以及公式 解析后为emf 图片, emf 转图片(解决图片上部分显示不全问题) 图片转文字 /*********************** ...

  9. RecyclerView显示列表

    本次要讲的内容是利用RecyclerView显示Users列表的信息,如下图所示. 首先我们来创建模型User.java package com.example.mytest.User; import ...

  10. celery 使用

    celery 1.celery介绍 celery能用来做什么: 1.异步任务 2.定时任务 3.延迟任务 1.1 理解celery的运行原理 1.可以不依赖任何服务器 通过自身命令 启动服务 2.ce ...