一:背景

1. 讲故事

用惯了宇宙第一的 Visual Studio 再用其他的开发工具还是有一点不习惯,不习惯在于想用的命令或者面板找不到,总的来说还是各有千秋吧,今天我们来聊一下几个在调试中比较实用的命令:

  • 查看内存
  • 硬件断点
  • 虚拟内存布局

二:命令解读

1. 查看内存

相信大家都知道 Visual Studio 直接提供了 Memory 面板来观察内存布局,但 VSCode 没有,还需要自己手敲命令来实现,这就比较麻烦了,为了方便先上一段测试代码。


#include <iostream> using namespace std; int main()
{
int a = 10;
int b = 11;
int c = 12;
}

调试器配的是 GDB,只能用它的 x 命令观察内存,类似 WinDbg 的 d系列命令,我们在 int c=12 处下个断点,命中后使用 -exec x/40xw $esp 观察 esp处的内存块,截图如下:

这里的 x/40xw $esp 是什么意思呢? 翻译成 WinDbg 的术语就是 dd esp L40 的意思,也就是显示 40 个 dword 指针单元的内存地址。

从内存地址上看 a,b 都存放在线程栈上,虽然没有 VS 便捷,但还是可以用的。

2. 硬件断点

说实话到现在都没搞明白为什么 Visual Studio 不支持硬件断点,其实是可以做的,熟悉 WinDbg 的朋友都知道有一个 ba 命令就是专门用来设置硬件断点,硬件断点牛的地方在于可以对 内存地址 的读写进行监控,不过它需要 CPU 的调试寄存器支持,即 dr0 ~ dr7

比如我在 windbg 中对 04ee5000 下一个读断点,输出如下:


eax=04ee5000 ebx=00000000 ecx=7746dfe0 edx=10088020 esi=7746dfe0 edi=7746dfe0
eip=77434e50 esp=0897f804 ebp=0897f830 iopl=0 nv up ei pl zr na pe nc
cs=0023 ss=002b ds=002b es=002b fs=0053 gs=002b efl=00000246
ntdll!DbgBreakPoint:
77434e50 cc int 3 0:014> ba r4 04ee5000
0:014> g
0:014> r dr0
dr0=04ee5000

在 GDB 中也有类似的 硬件断点,即 rwatchawatch 命令,前者用来监视读操作,后者监视 读写操作,这里我们测试下 awatch 命令,测试代码如下:


int main()
{
int a = 10;
int b = 11; a = 15; int c = 12;
}

接下来在 int b=11 处下断点,通过 x 命令找到 a 所在的内存地址,然后使用 awatch 进行监控,不过有点坑的是 awatch 需要转成具体类型,相当于监视的范围宽度,输出如下:


-exec x/10x $esp+0x4
0xffffd11c: 0x0000000a 0xf7dd4000 0xf7dd4000 0x00000000
0xffffd12c: 0xf7c06ed5 0x00000001 0xffffd1c4 0xffffd1cc
0xffffd13c: 0xffffd154 0xf7dd4000
-exec awatch 0xffffd11c
Cannot watch constant value `0xffffd11c'.
-exec awatch *(int*)0xffffd11c
Hardware access (read/write) watchpoint 3: *(int*)0xffffd11c
-exec c
Continuing. Hardware access (read/write) watchpoint 3: *(int*)0xffffd11c Old value = 10
New value = 15
main () at /home/skyfly/code/main.cpp:12
12 int c = 12;

从上面输出的信息看非常明确,也非常有意思,给 GDB 点一个赞。

3. 虚拟地址布局

这个貌似也是 VS 不具有的功能,在 GDB 中得到了支持,相当于 WinDBG 中的 !address 命令,观察虚拟地址布局好处多多,可以看到内存的分配情况,比如 stack 是否溢出就能从中观察得到,在 GDB 中可以使用 i proc mapping 命令,输出如下:


-exec i proc mapping
process 5142
Mapped address spaces: Start Addr End Addr Size Offset objfile
0x56555000 0x56556000 0x1000 0x0 /home/skyfly/code/main.out
0x56556000 0x56557000 0x1000 0x1000 /home/skyfly/code/main.out
0x56557000 0x56558000 0x1000 0x2000 /home/skyfly/code/main.out
0x56558000 0x56559000 0x1000 0x2000 /home/skyfly/code/main.out
0x56559000 0x5655a000 0x1000 0x3000 /home/skyfly/code/main.out
0x5655a000 0x5657c000 0x22000 0x0 [heap]
0xf7ac7000 0xf7ac9000 0x2000 0x0
0xf7ac9000 0xf7acb000 0x2000 0x0 /usr/lib32/libgcc_s.so.1
0xf7acb000 0xf7ae1000 0x16000 0x2000 /usr/lib32/libgcc_s.so.1
0xf7ae1000 0xf7ae6000 0x5000 0x18000 /usr/lib32/libgcc_s.so.1
0xf7ae6000 0xf7ae7000 0x1000 0x1c000 /usr/lib32/libgcc_s.so.1
0xf7ae7000 0xf7ae8000 0x1000 0x1d000 /usr/lib32/libgcc_s.so.1
0xf7ae8000 0xf7af2000 0xa000 0x0 /usr/lib32/libm-2.31.so
0xf7af2000 0xf7bb3000 0xc1000 0xa000 /usr/lib32/libm-2.31.so
0xf7bb3000 0xf7bea000 0x37000 0xcb000 /usr/lib32/libm-2.31.so
0xf7bea000 0xf7beb000 0x1000 0x101000 /usr/lib32/libm-2.31.so
0xf7beb000 0xf7bec000 0x1000 0x102000 /usr/lib32/libm-2.31.so
0xf7bec000 0xf7c05000 0x19000 0x0 /usr/lib32/libc-2.31.so
0xf7c05000 0xf7d5d000 0x158000 0x19000 /usr/lib32/libc-2.31.so
0xf7d5d000 0xf7dd1000 0x74000 0x171000 /usr/lib32/libc-2.31.so
0xf7dd1000 0xf7dd2000 0x1000 0x1e5000 /usr/lib32/libc-2.31.so
0xf7dd2000 0xf7dd4000 0x2000 0x1e5000 /usr/lib32/libc-2.31.so
0xf7dd4000 0xf7dd5000 0x1000 0x1e7000 /usr/lib32/libc-2.31.so
0xf7dd5000 0xf7dd8000 0x3000 0x0
0xf7dd8000 0xf7e4d000 0x75000 0x0 /usr/lib32/libstdc++.so.6.0.28
0xf7e4d000 0xf7f4f000 0x102000 0x75000 /usr/lib32/libstdc++.so.6.0.28
0xf7f4f000 0xf7fad000 0x5e000 0x177000 /usr/lib32/libstdc++.so.6.0.28
0xf7fad000 0xf7fb3000 0x6000 0x1d4000 /usr/lib32/libstdc++.so.6.0.28
0xf7fb3000 0xf7fb5000 0x2000 0x1da000 /usr/lib32/libstdc++.so.6.0.28
0xf7fb5000 0xf7fb7000 0x2000 0x0
0xf7fc9000 0xf7fcb000 0x2000 0x0
0xf7fcb000 0xf7fcf000 0x4000 0x0 [vvar]
0xf7fcf000 0xf7fd1000 0x2000 0x0 [vdso]
0xf7fd1000 0xf7fd2000 0x1000 0x0 /usr/lib32/ld-2.31.so
0xf7fd2000 0xf7ff0000 0x1e000 0x1000 /usr/lib32/ld-2.31.so
0xf7ff0000 0xf7ffb000 0xb000 0x1f000 /usr/lib32/ld-2.31.so
0xf7ffc000 0xf7ffd000 0x1000 0x2a000 /usr/lib32/ld-2.31.so
0xf7ffd000 0xf7ffe000 0x1000 0x2b000 /usr/lib32/ld-2.31.so
0xfffdd000 0xffffe000 0x21000 0x0 [stack]

从输出看,当前的 stack 布局段在 0xfffdd000 ~ 0xffffe000 之间,如果发生了栈溢出就可以看下是不是超过这个范围了哈,除了 stack 还可以看到 heap 的段范围 0x5655a000 ~ 0x5657c000

三:总结

GDB 有很多实用的命令这里就不逐一介绍了,至少在 Linux 上是霸主一样的存在,真搞不懂 netcore 的调试要和 lldb 扯在一块,简直是不走寻常路哈

聊一聊 GDB 调试程序时的几个实用命令的更多相关文章

  1. gdb调试常用实用命令和core dump文件的生成

      1.生成core dump文件的方法: $  ulimit -c //查看是否为0 如果为0 $   ulimit -c unlimited 这样在程序崩溃以后会在当前目录生成一个core.xxx ...

  2. 用GDB调试程序(一)

    http://blog.csdn.net/haoel/article/details/2879 用GDB调试程序 GDB概述———— GDB是GNU开源组织发布的一个强大的UNIX下的程序调试工具.或 ...

  3. Linux高级编程--04.GDB调试程序(查看数据)

    查看栈信息 当程序被停住了,你需要做的第一件事就是查看程序是在哪里停住的.当你的程序调用了一个函数,函数的地址,函数参数,函数内的局部变量都会被压入"栈"(Stack)中.你可以用 ...

  4. Linux高级编程--04.GDB调试程序(设置断点)

    调试已运行的程序 在UNIX下用ps查看正在运行的程序的PID(进程ID),然后用gdb PID格式挂接正在运行的程序. 先用gdb 关联上源代码,并进行gdb,在gdb中用attach命令来挂接进程 ...

  5. Linux下使用GDB调试程序

    问题描述:          Linux下使用GDB调试程序 问题解决:          (1)生成调试文件 注:         使用命令   gdb IOStream.c   -o IOStre ...

  6. [转] 用GDB调试程序(五)

    转:http://blog.csdn.net/haoel/article/details/2883 查看运行时数据———————        在你调试程序时,当程序被停住时,你可以使用print命令 ...

  7. 用gdb调试程序笔记: 以段错误(Segmental fault)为例

    用gdb调试程序笔记: 以段错误(Segmental fault)为例[转] 1.背景介绍2.程序中常见的bug分类3.程序调试器(如gdb)有什么用4.段错误(Segmental fault)介绍5 ...

  8. 用GDB调试程序

    转自:http://blog.csdn.net/haoel/article/details/2879 是一篇从基础讲gdb的博文 用GDB调试程序 GDB概述---- GDB是GNU开源组织发布的一个 ...

  9. gdb调试常用实用命令和core dump文件的生成(转)

    1.生成core dump文件的方法: $  ulimit -c //查看是否为0 如果为0 $   ulimit -c unlimited 这样在程序崩溃以后会在当前目录生成一个core.xxxx的 ...

  10. 用GDB调试程序(七)

    改变程序的执行——————— 一旦使用GDB挂上被调试程序,当程序运行起来后,你可以根据自己的调试思路来动态地在GDB中更改当前被调试程序的运行线路或是其变量的值,这个强大的功能能够让你更好的调试你的 ...

随机推荐

  1. jmeter学习-性能指标、jmeter初识

    一:性能测试的指标 1. 并发/并发数/并发用户数 狭义的并发:同一时间做相同的一件事 广义的并发:同一时间做不同事情,混合场景,对服务器来说的并发 性能测试,先做简单的狭义并发,在做广义并发:先做单 ...

  2. vue3学习大全(1)

    # vue3.0 Vue3.0 在北京时间2020年9月19 日凌晨,发布了 3.0 版本,代号:*One Piece* ## 1.新特性 Vue 3 中一些需要关注的新功能包括: - [组合式 AP ...

  3. 使用JAX构建强化学习agent并借助TensorFlowLite将其部署到Android应用中

    在之前发布文章<一个新 TensorFlow Lite 示例应用:棋盘游戏>中,展示了如何使用 TensorFlow 和 TensorFlow Agents 来训练强化学习 (RL) ag ...

  4. Java Client 调 FastDFS在Docker容器中Storage ip映射的问题

    首先在写这篇文章之前,百度了不少资料基本上都是 1.iptables 2.用--net=host主机网络 3.替换java fast-client.jar自己做mapping映射. 方法一:iptab ...

  5. Git 小技巧:忽略某些文件的更改

    *以下内容为本人的学习笔记,如需要转载,请声明原文链接微信公众号「ENG八戒」https://mp.weixin.qq.com/s/dp9Mwq7vf0ASF_FftBN8Ww 作为一枚合格的代码贡献 ...

  6. CSPS2019 括号树 题解

    链的部分分 我们设f[i]表示以i结尾的括号序列有多少个,那么i的实际答案就是f的前缀和 显然,所有左括号和不能匹配的右括号的f均为0 对于每一个能匹配的右括号i,我们找到与之匹配的左括号p,以i结尾 ...

  7. BGF bivariate generating function 双变量生成函数

    目录 定义 BGF bivariate generating function horizonal GF 和 vertical GF 例子 组合数 horizonal GF vertical GF ( ...

  8. Kafka 之 HW 与 LEO

    更多内容,前往 IT-BLOG HW(High Watermark):俗称高水位,它标识了一个特定的消息偏移量(offset),消费者只能拉取到这个 offset 之前的消息.分区 ISR 集合中的每 ...

  9. 深入消息队列MQ,看这篇就够了!

    大厂面试爱问消息队列 MQ. 因为消息队列MQ,既是大型分布式系统不可缺少的中间件,也是高并发系统的基石中间件. 如果你想要快速掌握消息队列 MQ 最内核的知识,以及消息队列MQ的主流应用场景.主流产 ...

  10. dart基础---->函数传值

    1. string type main(List<String> args) { String name = "huhx"; changIt(name); print( ...