Luogu3904 三只小猪 (组合数学,第二类斯特林数,高精)
即使\(n<=50\),斯特林数也会爆long long。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#define R(a,b,c) for(register int a = (b); a <= (c); ++ a)
#define nR(a,b,c) for(register int a = (b); a >= (c); -- a)
#define Max(a,b) ((a) > (b) ? (a) : (b))
#define Min(a,b) ((a) < (b) ? (a) : (b))
#define Fill(a,b) memset(a, b, sizeof(a))
#define Abs(a) ((a) < 0 ? -(a) : (a))
#define Swap(a,b) a^=b^=a^=b
#define ll long long
#define ON_DEBUG
#ifdef ON_DEBUG
#define D_e_Line printf("\n\n----------\n\n")
#define D_e(x) cout << #x << " = " << x << endl
#define Pause() system("pause")
#define FileOpen() freopen("in.txt","r",stdin);
#else
#define D_e_Line ;
#define D_e(x) ;
#define Pause() ;
#define FileOpen() ;
#endif
struct ios{
template<typename ATP>ios& operator >> (ATP &x){
x = 0; int f = 1; char c;
for(c = getchar(); c < '0' || c > '9'; c = getchar()) if(c == '-') f = -1;
while(c >= '0' && c <= '9') x = x * 10 + (c ^ '0'), c = getchar();
x*= f;
return *this;
}
}io;
using namespace std;
const int N = 1007;
int a[N], b[N];
string add(string A, string B){
string S;
Fill(a, 0), Fill(b, 0);
int lenA = A.size(), lenB = B.size();
R(i,0,lenA - 1) a[i] = A[lenA - i - 1] ^ '0';
R(i,0,lenB - 1) b[i] = B[lenB - i - 1] ^ '0';
int len = Max(lenA, lenB);
R(i,0,len - 1){
a[i] += b[i];
a[i + 1] += a[i] / 10;
a[i] %= 10;
}
if(a[len]) ++len;
nR(i,len - 1,0) S += a[i] + '0';
return S;
}
string mul(string A, int B){
string S;
int len = A.size();
Fill(a, 0);
R(i,0,len - 1) a[i] = A[len - i - 1] ^ '0';
int res = 0;
R(i,0,len - 1){
a[i] = a[i] * B + res;
res = a[i] / 10;
a[i] = a[i] % 10;
}
while(res){
a[len++] = res % 10;
res /= 10;
}
nR(i,len - 1, 0) S += a[i] + '0';
return S;
}
string f[107][107];
int n, m;
int main(){
//FileOpen();
int n, m;
io >> n >> m;
if(n < m){
printf("0");
return 0;
}
if(n == m){
printf("1");
return 0;
}
R(i,1,n){
f[i][1] = "1";
R(j,2,m){
f[i][j] = add(f[i - 1][j - 1], mul(f[i - 1][j], j));
}
}
cout << f[n][m];
return 0;
}

Luogu3904 三只小猪 (组合数学,第二类斯特林数,高精)的更多相关文章
- BZOJ 2159: Crash 的文明世界(组合数学+第二类斯特林数+树形dp)
传送门 解题思路 比较有意思的一道数学题.首先\(n*k^2\)的做法比较好想,就是维护一个\(x^i\)这种东西,然后转移的时候用二项式定理拆开转移.然后有一个比较有意思的结论就是把求\(x^i\) ...
- Gym - 101147G G - The Galactic Olympics —— 组合数学 - 第二类斯特林数
题目链接:http://codeforces.com/gym/101147/problem/G G. The Galactic Olympics time limit per test 2.0 s m ...
- 【BZOJ5093】图的价值(第二类斯特林数,组合数学,NTT)
[BZOJ5093]图的价值(第二类斯特林数,组合数学,NTT) 题面 BZOJ 题解 单独考虑每一个点的贡献: 因为不知道它连了几条边,所以枚举一下 \[\sum_{i=0}^{n-1}C_{n-1 ...
- 【BZOJ4555】求和(第二类斯特林数,组合数学,NTT)
[BZOJ4555]求和(第二类斯特林数,组合数学,NTT) 题面 BZOJ 题解 推推柿子 \[\sum_{i=0}^n\sum_{j=0}^iS(i,j)·j!·2^j\] \[=\sum_{i= ...
- Codeforces 932 E Team Work ( 第二类斯特林数、下降阶乘幂、组合数学 )
题目链接 题意 : 其实就是要求 分析 : 先暴力将次方通过第二类斯特林数转化成下降幂 ( 套路?) 然后再一步步化简.使得最外层和 N 有关的 ∑ 划掉 这里有个技巧就是 将组合数的表达式放到一边. ...
- HDU2512 一卡通大冒险 —— 第二类斯特林数
题目链接:https://vjudge.net/problem/HDU-2512 一卡通大冒险 Time Limit: 2000/1000 MS (Java/Others) Memory Lim ...
- 【CF961G】Partitions 第二类斯特林数
[CF961G]Partitions 题意:给出n个物品,每个物品有一个权值$w_i$,定义一个集合$S$的权值为$W(S)=|S|\sum\limits_{x\in S} w_x$,定义一个划分的权 ...
- 【BZOJ2159】Crash的文明世界(第二类斯特林数,动态规划)
[BZOJ2159]Crash的文明世界(第二类斯特林数,动态规划) 题面 BZOJ 洛谷 题解 看到\(k\)次方的式子就可以往二项式的展开上面考,但是显然这样子的复杂度会有一个\(O(k^2)\) ...
- BZOJ5093 [Lydsy1711月赛]图的价值 【第二类斯特林数 + NTT】
题目链接 BZOJ5093 题解 点之间是没有区别的,所以我们可以计算出一个点的所有贡献,然后乘上\(n\) 一个点可能向剩余的\(n - 1\)个点连边,那么就有 \[ans = 2^{{n - 1 ...
- 8-机器分配(hud4045-组合+第二类斯特林数)
http://acm.hdu.edu.cn/showproblem.php?pid=4045 Machine schedulingTime Limit: 5000/2000 MS (Java/Othe ...
随机推荐
- python 的 @staticmethod和@classmethod和普通实例方法
参考:https://www.huaweicloud.com/articles/12607084.html https://blog.csdn.net/qq_30708445/article/deta ...
- Java绘图基础
<零基础学Java> Java绘图基础 绘图是高级程序设计中非常重要的技术,例如,应用程序需要绘制闪屏图像.背景图像.组件外观Web程序可以绘制统计图.数据库存储的图像资源等. Graph ...
- Linux免密登陆配置(互信配置)
Linux免密登陆配置(互信配置) 1.生成当前用户的秘钥文件 [oracle@localhost .ssh]$ ssh-keygen -t rsa 2.配置远程登录用户的公钥文件 将公钥文件拷贝至另 ...
- 【原创】SpringBoot 2.7.0通过lettuce及commons-pool2 v2.9.0集成Redis踩坑记录
背景 公司的一个项目由于HTTPS证书到期,导致小程序.POS不能正常使用.所以百度了下,通过URL检测证书有效期的代码,并自行整合到一个服务中. 代码仓库:[基于SpringBoot + 企业微信 ...
- 不忍了,快速下载Visual Studio Code
更新记录 本文迁移自Panda666原博客,原发布时间:2021年5月2日. 奇怪的原因 因为一些众所周知的原因,在国内下载Visual Studio Code的速度比较慢,所以我们需要一些方法来加快 ...
- 浅析DispatchProxy动态代理AOP
浅析DispatchProxy动态代理AOP(代码源码) 最近学习了一段时间Java,了解到Java实现动态代理AOP主要分为两种方式JDK.CGLIB,我之前使用NET实现AOP切面编程,会用Fil ...
- 6000字Locust入门详解
目录 一.Locust 性能测试 (一). 性能测试工具 主流性能测试工具对比 认识Locust (二) locust 基本用法 1.安装locust 2.编写用例 3. 启动测试 GUI 模式启动 ...
- 「非软文」零基础学习TypeScript(源码开源)
今天,这篇文章篇幅很短,主要开放我最近学习整理TypeScript源码. 源码地址 https://github.com/maomincoding/typeScript_study 更多内容请见原文, ...
- node开启 https线上服务你不会吗?
var https=require("https");//https服务var fs = require("fs")var express = require( ...
- 快速保存Win10锁屏壁纸,收获美丽瞬间
对于写程序而言,每天接触得最多的就是电脑了 所以保持一种开放乐观,豁达美丽的心情是十分有必要的 使用"Everything"工具,输入"LocalState\Assets ...